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INTRODUCTION

The work under this grant on plasma presheaths, which form a transition region be-

tween the collisionless electrode sheaths and the plasma, is directed toward the problems

of the Thermionic Energy Convertor (TEC). Figure 1 shows a schematic of a TEC in a

reactor core for space power applications and the basic physics. Cesium is put the gap

between the emitter and collector for two purposes: first, to ionize and neutralize the

space charge so that a useful electron current density can pass (10 - 100 amps/square

cm), and second to reduce the eiectrode work functions by adsorption of cesium. Of the

plasma physics of the the cesium filled gap of the TEC, the plasma-electrode interactions

are the most significant part because these regions form boundary conditions which con-

trol the plasma density and temperatures of the entire gap. Thus the research under this

grant has been directed toward the study of collisional presheaths which form the layer

adjacent to an electrode on the order of one ion mean free path thick. However, the re-

search pursued under this grant is not limited in applicabilty to TECs but is of interest

to plasma-surface interactions in general. Other applications include electric propulsion

where electrode erosion is a problem and not fully understood and more generally any

plasma-surface interaction.

This report includes the asymptotic presheath theory developed, and is preceded by the

basic theory of the Thermionic Energy Convertor (TEC) and is followed by the application

of the theory to a time dependent model of the TEC in the program called TEC. As shown

in the TEC results, the agreement with experiment is good except in the low current regime

of the TEC where an unexplained disagr-. -.ut remains. This is still a puzzle.

• ,= m, m n nnnnn ~a unmno mnuu umlm mu



BASIC TEC THEORY

The basic theory of the TEC is set forth in the following paper published under this

grant.

4I
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Effects of Emitter Sheath Ion Reflection and Trapped
Ions on Thermionic Converter Performance Using an

Isothermal Electron Model
GEOFFREY L. MAIN AND S. H. LAM

Mau-T paper coples ezact coiles sbeath ca-ulations not assumed cold, but are given the correct ion tempera-
N an othermihts mdelofatUtskconvter. Themiter ture and shifted in velocity according to a generalization

sructure amkse acca un redected l.ow, trapped ions, and of the Bohm criterion [51. (61.
urice mhsemliss . It Is sw, that lemnag the net loes at ios at

the mitr a the inted mode by these I Imemen ierada perror- Both ion reflection and trapped ions in the emitter sheath
m--me. lnadditlon, his wthat whentheemitterreturstoomany reduce the normalized (by plasma density) net ion loss
ofthel i, the we Is extgla becametOereoisIucletft sistive rate to the emitter. Also, both of these phenomena raise
btlg to maintin the neceisary plasma ekctrn temperature Iro ion. the normalized plasma density adjacent to the emitter. The
Iati.Th results sge thattthe Ignited maek annotbe improved higher plasma density at the emitter causes a greater in-
mach. HNwe, amilgated modes In which the electron temperature

mlow, umashe publtdmoed dnter ofmthitadverse crease in the loss of hot plasma electron energy to the
bhavior. emitter than the corresponding decrease in the loss of ion-

ization energy (carried by the ions) to the emittcr. There-
fore, these emitter sheath phenomena increase arc-drop.

I. INTRODUCTION Within the limitations of the present isothcrmal thcr-
MITTER sheath phenomena are important in ther- mionic converter formulation, all three of these phcnom-
imionic energy converters because the emitter sheath ena (which become significant at low currents) stccpcn the

forms the emitter boundary condition for the plasma in current-voltage characteristic. At low current densitics.
the gap by controlling both the ion loss rate and the loss the present theory shows that the collector sheath height
rate of hot (3000 K) plasma electrons to the emitter. This decreases, resulting in a larger electron diffusion velocity
paper examines two expected emitter sheath phenomena than can be justified for the continuum model used in the
and their effects on converter performance: reflection of plasma region. The result of lower performance at lower
ions coming from the plasma by a double emitter sheath, current is in agreement with experimental studies. At some
and ions trapped in the double emitter sheath. The authors current density which depends strongly on the emitter
have previously suggested that ion reflection might im- sheath conditions, the ignited mode is no longer sclf-sus-
prove thermionic energy convener performance II] and raining and the arc is extinguished.
have subsequently shown that ion reflection at the emitter Fig. I is a schematic diagram of the cesium diode con-
is likely to degrade the performance in the ignited mode verter, The emitter is heated externally to temperature Tf
and, in addition, that trapped ions in a double emitter which is typically 1750 K or higher. and the collector is
sheath are also likely to degrade performance in the ig- cooled to temperature Tc which is typically 900-i100 K.
nited mode [21. Lundgren [3), (41 has also shown this with The gap space d. or converter length. which is typically
simplified ion and electron dynamics. In the present paper 0.25 mm, separates the emitter from the collector. The
the effects of emitter ion reflection and ion trapping in the cesium reservoir, which is sometimes imbedded in the
ignited mode are calculated using exact electron and ion collector, is kept at temperature Tm to maintain the desired
dynamics in the collisionless (except for ion trapping) cesium pressure (typically I to 2 torr) in the gap. The
sheaths. The electrons entering the sheaths from the electrical load is connected across the emitter and collec-
plasm are assumed to have a Maxwellian distribution, tor to produce power.
but no assumptions are made about the returning elec-
fro, and the electron density in the sheath is calculated II. THE ISOTHERMAL ELECTRON FORMULATION

exactly. The ions entering the sheaths from the plasma are In this section the isothermal thermionic converter for-

mulation is developed. The formulation is similar to that
Maas vApuedO by te Air For1e Oiue of Sciemefc Research. of Lam [7) but is generalized to eliminate the assumption

o. L. Maio is with dte School of Mechanical Engineenng. Georgia In- of high sheaths which has previously been used to sim-
*Ma of Tolology. Atlms. GA 30332. plify the electron dynamics. Since both low-emitter and

$. H. Lain is with th Mechainical and Aerospace Enlifteringl [epan-. H. Laittm ivwt M ancaton. N 0 Ee. low-collector sheath heights are encountered as a conse-

Log Number 613329 quence of ion reflection and trapped ions, the assumption

0093-3813/87/06(X-0309$01.00 © 1987 IEEE
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Fig. 2. The potential distribution in the converter.

Fi# I The :csium di4qc convcrter.

The emitted current density which crosses the emitter
of Boltzmann plasma electron distributions at the plasma- sheath potential peak into the converter plasma region is
sheath interface must be abandoned. At both the emitter - Ji exp (-A). A > 0
and collector, the low sheaths return few plasma elec-
trons, leaving the distributions largely one sided. Fur- JE - JR, Ax S 0. (5)
thermorc. at the emitter sheath emitted electrons must be
taken into account. Thus the ratio of electrons moving We also define the net current density through the con-
toward the sheath to the total density of electrons at the verter J and the normalized current density
sheath edge is not 1/2. as in the Boltzmann assumption. (

In Fig. 2 we define the potentials in the converter. All j = . (6)
of the potentials are nondimensionalized by emitter tem-
pcrature as follows: We have assumed for convenience that the ion contribu-

Otion to net current is negligible because the cesium-ion-
X = Z- (I) to-electron-mass ratio is enormous. Ions will typically.TE contribute no more than I percent of the net current. Elec-

where tron temperature is nondimensionalized as

nondimensional potential. - (7)
Potential. TF(

q electron charge. where T, is the plasma electron temperature which, in this
& Boltzmann constant. and section. is constant by the isothermal assumption. Fi-
T r emiter temperature. nally. we have the thermal speeds:

We also use the following terminology for various poten-
twls in the converter: I kT (8)

* emitter work function. - m
AIN back sheath height.

N,, reflective potential. BkT ,
N#. emitter sheath height. a - (9)
J\, plasma potential drop.
Vj arc-drop. The isothermal formulation is developed from here in
X,. collector sheath height. the same way as the general formulation except that we
4, collector work function, and take full advantage of the isothermal assumption by look-
',., converter output voltagc. ing only at the global con.cnation cquation. insicad of

Inspcction of Fig. 2 immediately yieltds the following re- the local ones used in the general formulation. We then
Ution.s: assume that the transport properties. collision frequen-

cies. and the ionization source coefficient are constant
Va - V. - (4p. #0 - A% (2) across the converter because of the isothermal assump-

I' - (Xc - Xf,) - Ax. (3) tion. Also. we find only the steady-state solution. We
The Richanr on current density of electrons from the carry out this development by deriving the global conser-emitter L% vation equations for the isothermal case (current, momen-

tum. and electron energy) and then reducing these to a set
(_A 120T(K)exp() (4) of three simultaneous equations in the variables ,. XE. and

cXm In some cases the actual calculations are carried out

'7
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using different variables when je: or xc are small or zero. where
In the case. for instance. of a single ion-repelling emitter
sheath we use j because xF is zero. These equations are Q =

nonlinear and solved numerically using a positive definite kT,

Newton~s method.
First. we consider conservation of current. The collec-

tor is assumed to emit nothing: therefore. at the plasma- is the electron Mach number at the emitter. This is lust

collector sheath interface we have an application of (1 3).
a,.r( I) -10) Electron energy conservation is developed by conid-

j = . e (10) enring energy exchange with the emitter and collcctor and
2 energy lost to ionization. Power carried into the plasma

where a, is the fraction of the total plasma density at the by emitted electrons is

collector sheath which is moving toward the collector and 4. Tt
pt I) is the total plasma density at the plasma-collector Pb. - J (2 + #*. + Ax) q. (17)
sheath interface. Because we continue to assume that the q
part of the plasma electron distribution coming into the Power returned to the emitter is
collector sheath is Maxwellian. we can write ao as P

I Pas "(h:- J)(2t+ + 41 i-) . (18)
al= (Il) q

ar + 2 "Idu Power flowing into the collector is

which takes into account the plasma electrons reflected by q= J(2r + + V, + , kT. (19)q
the collector sheath. We still assume that the plasma elec-
tron distribution coming into the collector sheath is Max- Ionization power loss is

wellian and that it does not have any velocity shift be-
cause the sheath is expected to be electron repelling. In P.. - J.. Vii q (20)

the limit of a high collector sheath. a, - 1/2 and we q
have a fully Boltzmann distribution of electrons at the col- where J,,, is the total ion current into both the cmitter and
lector sheath edge. The situation at the emitter is more collector, and Vp is the first ionization cncrgy. Conscr-
complex because the emitted electrons must be taken into vation of electron energy is
account. We have the backscattered current density Js Pf - Pn. + P(. + P., (21)
which is the plasma electron current density moving into
the emitter: which can be reduced to

Jos= n(0)aa( exp (12) I - V - Aj, Vi; (22)

where n(O) is the total plasma density at the emitter where j, In the ignited modc - Is generally
about 2(T - 1750 K and T, = 3000 K). con%cqucmlysheath-plasma interface and a, is the fraction of total te~r-rpV sngtv.i te odtehg

plasma density at the interface moving toward the emitter. a cron t u is ener byrsstae
Contnuiy o eletro curentdemndsplasma electron temperature is generated by resistance

Continuity of electron current demands, heating.

j4 - JNS + J (13) Finally. we consider electron and ion momentum. From

which can be written electron momcntum conservation. we find the potential
drop in the plasma region. By adding the electron and ion

(.,, X X \\ momentum equations as in the general case, we find our
J(0) - exp - (14) diffusion equation and boundary conditions to which the

sheaths contribute flux terms. When we introduce the ion-

This can be rewritten using (3) and (6) as ization source term into this. we have the complete for-
I mulation. Electron momentum conservation is

n" n(0)cr" (V., + AX," (15) 0 dp d# amIu, (23)1 n( i) exp k 0 dx qn d -

where X, is electron mean-free path. Using p, nkT, and
J - qnu,, we can rearrange (23) into

OetIQ _1exp (16) jm __( kT,.! + nq . (24)

'a' !2Q (j ma, dx d
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This can be turther reduced by aividin$ by 4p and using where
x .I/d where d is the converter gap tickkness: -d (all a

__ 1' h i L 25)' LT, + kTi, X,1,1 ,U

inte~gratin of this equation fronm the emte sheath inter- ,qu+tu.nT+A(34)

w h r u n I I R - A '( r ) it 0 ( 3 5 ,

whhere

R = 4dftdt. (27) L, -, ( Ln -uM)

The quuntity R is the noniiali~ed plasma resistance.
The ion and electon niomntumn equations can be writ- where A ( 7) is thc ionlizationf cocthcicnt and is fo'und fromn

tell consideration of ioniz'ation kinetic-. ot thc cesiumi accord-

k . i o m1,,, (2a ing to L.a wless 181. Its solution for it is
AT.. d- k.n -k - B2a sin) (A + C) (37)

di dn (28b) 'h"r Band Care constants ot inieg~raiion and A -A ( 7).
T.r I' x,-- - 2b The quantities 0,, and 61. which are the boundary condi-

where Xis in mean- free path and a, is ion thermal %peed: lions for (37). can be writtcn as functions ofr . X*~
and Ai(,:

4 T1, 0 1,= ,r. Xf -F - , 0(v . &As. (38)

Ad ii~ f( 8 )adi /2 h il sA W hen there is no reflection. ~,and 01 are Noth largc. i.e.:
4- '. &Tj.L,2_1N,+ Ita,) it (29)

which is amhipolar diffusion. Equation (29) is differtn-
liateti to heconle Significant reflection on the emitter side reduce% d,, and it

(AT.+ AT) ii, am dmay indeed attuin negative values for sufficiently strong
4L,+ -- n.)reflection.dx- + k d.v: 4. The density equation 05) with the houndury conditions

+ ! /(i) 0. 1)1, n d, is a linear eigcnvalue problem: it,. soluin yields
X, ILV A and C as functions ot'd,, and 13. The calculated result..

We assume rccon'btnation is negligible and the ionization are shown in Fig. 3. Since A (7) is a function t)it trom

sourc ter is.the ionization kinetics. the value ofr is thus deterniined
M)UrL ~ y a function of 0,, and di. The plasma resistance: R lso)
d (.)-d wn) St(1)can be exprc.ssed in terms of fum-lion" of 0,, and 41 through
;r d.r A () Aand C using (27):

Using (31) ini 4301 yield% %i ( u

dc . (32) R 2--rI- n-) (3f

Equationm 04) taken at the boundarites oft the plasma (at (2A K
the emitter and ct~lee'.or sheath inerfaces) forms the Thshahrulshihroie.Q 1  nd.co-

plasa Nnd~n ~.ndiun.plete the isothermal formulation. The sheath thcorv used

atllit)is in exact solution to the Poisson equation and collision-
- less Boiltzmann equation for warm plasma ion distribution

with a 10 percent of Bohm speed cutoff velocity to up-

- results are summarized below. The quantities a, 3, Q.
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TABLE 1
30 , -30ISOTHERMAL SCLLTIO% CON.rwrO..

CASE 1 CASE 2

20 ~Tr -IT o K Tr -i~o K

77,;- 7soK 77 - 750K

d. - 0M11 d= -l10 al

#r( -2.12 eV #t 2 .67 CV

05 .: -1.60e vv # 1600eV
Ce P.-22030 Jn - .0 arnplcm2 JRt 7.5anip/cm2

-1 4 9 4 19 24 J_ I.&S01O ampfcm, ._. a 2. l10-i0 3m 11P CTTI

Fig ). The ctzent alue prnlni.

and am oun fro th shath alclatons s fnctonsof ion reflection. trapped ions. and surface emission ion%
ond re found f1%, the.se: acuain s ucin included. Emitter sheath effectb on therniconic converter

ofi.~. . ~nd A. Ie.:performance can be divided into twer categories: 1)
- ~ ~ A~)changes in net ion flux rate into the sheath which affect

plasma density directly-. and 2) changes in sheath poten-
If,(. . )(C. .)tial distribution which affect the exchange of"ht
= Q(plasma electrons for *cold*' emitter ions directly. A de-

Q ~ ' ~Ccreased influx of ions into the sheath. which occurs for all
j (?. If. Ac** 40, three emitter sheath phenomena. increases the plasma

density at the neutral plasma emitter sheath interface.
From the eigenvalue problem for the plasma density we Theoretical intuition suggests that an increascd plasma

tn finid density at the emitter would benefit performance by re-

A(-r) - A($.,. 61). (40) ducing resistance through the plasma and therefore reduc-
Fromthecontnuiy eqatin fo curentwe inding arc-drop. However, this is not the tase. While the
Fromthecontnuiy eqatin fo curentwe indplasma density at the emitter increases slightly, plasma

- - ~n (in (A + C) density at the collector dcrea5s. Consequently. total re-k n sin (C) jsistance increases.
All three oif these phenomena increase in significance

+ r In + i. In(-l (41) as net current density, through the convenier is reduced.
CIO) Each of these reduces the net ion loss rate to the emitter

and mm he lecton ometumequaionwe indand con.sequently increases arc-drop (therefore. degrading
and romthe lecronmometumequtionwe indperformance iit low current densities). This increase in( I sin (A -C)) arc-drop is in agreement with the same tendency in the

- X ~ %in (C) experimental results. However. the experimental results
I) ~ also show a plateau (of low arc-drop) at low current den-

+ jR + j!. Vii. (42) sity. This plateau occurs at a current density correspond-
.1 ing to significant surface ion emission and is therefore

Thes three previou'a equiOns determine Xp. 1, and r thought to occur as surface emission replace% volume ion-
when AN. asgisen. This sa oIf cquations isjh sliar ill iantn a-. the dominiant source tit plasma ions. Untorlu-
AN Esen in the, eaw tit AN, :s 0 -hen there is no rcdckL- nately. the theoretical calculations cannot be carried into
non. the calculations differ from previous isothermal cal- this region because the collisionless collector sheato
culatins because the Boltzmann assumption on the elec- matching (to the neutral plasma) fails.
Vowtb L% not "sd as indicated hy the presence of a, and To provide a realistic framework for presenting the re-
al. suits, we consider the converter conditions shown as case

I in Table 1. Case 2 is shown because it has the largest
01I. CALCULATLo RESULTS FOR ION REFLE~CTION AND surface emission of any typical thorrnionic converter op-

TRAPPED IONS crating condition (because the work function is high and
In this section we develop isothermal solutions for the the temperature is also high). Instead of presenting case

thenwonic converter with the emitter sheath phenomena 2 separately, we demonstrate the effects of surface emis-
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sion in case I "y increasing the surface emission by a 2C0O

factor of 100 thereby bringing it up to the level in case 2.
The net current density at which surface emission be- "- , '
comes significant can be estimated by multiplying J,,_ by ,6X X.

the square root of the ion to electron mass ratio (approx- I\
imatel) 500). In case I. this means that surface emission IA - '

becomes significant at J = 0.01 A/cm" while in case 2 12OC E .
significant surface emission begins at J = 1.0 A/cm2. 4-

IV. EFFECTS OF ION RFFLECTION 2
600.

In this section we discuss the isothermal results for case
I with ion reflection, but without trapped ions and with F

the small amount of surface emission ions of case i. Fig. ,____
4 is the CV diagram for this case. e

The dotted line extending upward from point A is the 3

single electron-,.:pelling emitter sheath solution. How- c ' I

ever. we have not taken recombination or the Schottky C20 040 060 08C O
effect into account in this isothermal formulation which v,("s)

are expected to become important at current densities near Fig. 4. CV diagram with ion reflection for cae I.

JR. The interest of this paper begins at point A. where the
single sheath doubles over. Between points A and B.
where the back sheath height A% is less than the sheath 0

height X_ .the emitter sheath is nonreflecting. In this re-
gion the sheath heights XE and xc remain constant while
the plasma density is proportional to net current J (the ,50t
normalized plasma density nc/J is constant). Only the
back sheath height A) changes and the CV curve in this
region is Boltzmann (the arc-drop is consiant). Beginning e. 1000
at point B and continuing to point C. the duuble emitter 1
sheath reflects plasma ions because the back sheath is -A'Xs _ 0.o

larger than the front sheath: in other words, the reflective
potential AX, = AN - XE is positive. The result is that
net ion loss rate into the sheath ii decreases and that arc-
drop increases. The quantity i is defined as the mean ion
velocity into the sheath normalized by the Bohm speed, 000 0 040 060 oso ,00
-J'kT,.M. The dotted curve BD is the same double sheath '

except that it assumes no ions are reflected; therefore. is Fig. 5. Normaliz'd plasma density with reflection
constant and arc-drop is constant. The two curves BC and
BD are almost indistinguishable because the increase in
arc-drop is small until the net current density is extremely = 8 A/cm2). Curve EG is the single ion-repelling case
small. The reason for this is that the shift speed is ap- assuming no reflection and is therefore a Boltzmann line
proximately u, - 2. and. therefore. a large increase in with constant arc-drop.
reflective potential is required to change D significantly At points Fand C the solutions fail at the collector. The
(the half-reflection point is A), 2 4.0 or approximately explanation for this failure is best given by examining
J - JR exp (-4) - 0.4 A/cm2 ). The shift speed u, is Figs. 5-8.
defined as the velocity at the peak of the incoming ion Fig. 5 is the normalized plasma density through the
distribution again normalized by the Bohm speed. convener gap. The highest curve with no reflection Ix,

The curve EF is the single electron-repelling emitter - 0 has the largest plasma density at the collector but the
sheath case. It is the limiting case for large amounts of lowest plasma density at the emitter. Ion reflection, which
trapped ions in which the double sheath peak has been decreases the ion loss rate to the emitter, raises the plasma
completely suppressed by the trapped ions. For this case. density at the emitter but lowers the plasma density at the
the emitter sheath solutions gives u, - 06. This curve is collector. The lower plasma density at the collector forces
not topologically connected to the curve ABC; it will be a smaller collector sheath heignt to pass the net current
shown in Section V that trapped ions move ABC toward density. This can be seen from (10). Fig. 6 is the potential
the single ion-repelling sheath case. The curve is much through the convener under the same reflection conditions
steeper (a faster increase in arc-drop) in this case because as in Fig. 5. In Fig. 6 the first two spaces on the left make
v, - 0 (the half-point in ion reflection is approximately J up the double emitter sheath, and the last space on the

1!
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toward negative infinity, and the ion loss rate to the col-
-o lector U, is driven to zero. The two preceding quantities

U, and u,, are defined at the collectcr sheath as 5 and i,
were at the emitter sheath. Fig. 8 shows the changes in

"8o000 020 040 060 00 100 the emitter sheath height, ion shift speed and ion loss rate.
1/ When the collector sheath failure occurs, the ion loss rate

to the collector is zero (9, - 0) and the corresponding
Fill. 6, Powmal disznbuzaon in te coivenler. plasma ion distribution at the collector is bunched at zero

velocity (u,, - -a). While the mathematics hold self-
ISO consistantly until U, - 0, the physics is clearly poor at

this point because R, - 0 demands that the plasma ions at
the collector have zero energy (zero temperature and zero

,20. mean velocity). An estimate of when the physics becomes
poor is u,, - 0. At this point the net ion loss rate is close
to the thermal speed. A second physical difficulty that oc-
curs with collector sheath failure is that the electron Mach

o80 number there Q, (from (10)) becomes

because the collector sheath height approaches zero (ac-
tually about 0,001 ). In the present continuum formulation

00c of the plasma region, it was assumed in (13) that Q, is
000 050 100 iso 200 250 small so that the electron momentum term u,du,/dx can

OX$ be neglected.
Fig. 7. Collector sheath failure. One could take the solution below the collector sheath

failure point if U, could attain ,_,ative values or if Q,
right is the collector sheath. The region between the two could attain values larger than v'2/r. There is no physical
sheaths is the neutral plasma region. In the no-reflection basis for assuming that R, can become negative since the
case. it can be seen that the potential has a pronounced collector emits nothing. However, there is a physical ba-
well in the middle. This is the result of the large plasma sis for allowing Q, to be larger than -'2/ir (an electron
densit,; in the middle. As reflection increases, this well distribution shift) as can be seen in Fig. 6: the potential
d;sappears on the collector side of the plasma because re- drop nearing the collector becomes progressively more
sistive drop ,'.re (due -1 low plasma density) increases electron accelerating as the collector sheath fails, and,
to the degrre -,t it is greater than the ambipolar rise (due therefore, the electron distribution should be shifted as
to decre, , lensity toward the collector). Simulta- the ion distribution is in an electron-repelling sheath.
meously .v e..sma potential gradient at the collector be. However, this would clearly invalidate the assumption
coming :.egaPv-. -ie collector sheath goes toward zero that the electron momentum term is negligible. Therefore,
height. Fig. " ..--ws the critical collector sheath quan- the momentum term must be added to explore further in
tities u th , collector sheath failure occurs. Collector this direction and this has not been done because of the
sheath height %c goes toward zero, the shift speed u,, goes resulting complexity in the equations.
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Comparison of Fig. 7 to Fig. 8 at the collector sheath Fig. 10. Plasma electron tmpertume.
failure point (Ax, - 2.5, u, - 0) shows that the ion loss
rte to the emitter is positive. At this point the plasma is
still ignited and generating ions as can be seen from Figs. 100.

9 and 10. The ionization coefficient A has dropped by 50
percent, but the plasma electron temperature has dropped
by only 5 percent. Finally, we note in Fig. I I that the 0
normalized plasma resistance R has risen by almost 100
percent. This is responsible for the increase in arc-drop
and the decrease in performance. Plasma resistance in-
creases in response to reflection because the loss of plasma
electron energy to the emitter is more important than the
loss of ionization energy to the emitter. Ion reflection at
the emitter increases the normalized plasma density there,
and consequently increases the normaliztd loss of plasma
electron energy there. The basis of this can be seen from
conservaion of electron energy (22): 00 05 10 axe 1'0 z00 250

r = I - fjv, - /,Vp. (43) Fig. 11. Normalizd plu.me sistane.

The ion energy loss term is generally small compared to not see any plateau or decrease in arc-drop as net -urrent
the electron energy loss term: density is decreased in the present calculations.

Ijj Vr ,, V , V. EFFEcrs oF TtAPPED IoNs
- - 0(0.02). (44) Fig. 12 shows the effect of trapped ions on the CV k ar-

jVj IVacteristics. In this section the trapped ion distributio., is
assumed to have the temperature of plasma ion distritu-

therefore, we take the electron energy equation as tion, and 100-percent trapped ions (f, - 1.0) is defined
to complete the ion distribution at the double emitter

r - I - jV4 . (45) sheath peak such that one has a Maxwellian distribution
there. Based on physical reasoning about the trapping

Since r is nearly constant (because of the ionization ki- mechanism, one expects on the order of 10. Also, some
aetics). the product jV is nearly constant. Ion reflection trapping calculations have been done for approximate
decreases j (because the normalized plasma density in- sheath formulations [9), [10] which support this.
cmasts) and therefore increases arc-drop V4 (makes V4 a Curve AHIJ is the CV characteristic for f, - 0.10. At
more negative number), point A there cannot be any trapped ions since the back

If the equations are reformulated in such a way as to be sheath height AX is zero. Therefore, the trapped CV
valid past the collector sheath failure point, then we can merges into the nontrapped curve there. The actual amount
eventually expect to see a decrease in arc-drop and a low- of trapped ions on thef,, 0.10 curve increases from zero
current plateau as the electron temperature approaches I at point A to the full 10 percent of a thermal distribution
(the ignited plasma is extinguished and the ionization at point H where the back sheath height A)( is equal to the
source is surface emission). This can be seen from (43). sheath height xE. The shift speed increases on AH from
However, as we see, the collector failure occurs before r 1.95 to 3.00. This corresponds to what is seen in Fig. 12
las dropped more than 5 percent. Consequently, we do where AX < XE.
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The rise in shift speed has been limited to 3.00. This -04 -02 00 02 04 06 os
limit is placed on the shift speed because a sheath with O.U vooge (volts)

beight of about 1.0 should not have a presheath region Fil. 13. othermal and expeinmcntal CV di ,prani,

capable of shifting the entire distribution so far. In fact,
limiting the shift speed is equivalent to increasing the cut. pressure. The experimental results are from I I]. The

off speed for the ion distribution function. point of this comparison is that the steepness of the CV

The arc-drop decreases as a result of the increase in u, chrracteristic in the experimental converters can be ex-

and the consequent increase in the net ion loss rate to the plained by a decreasing ion loss rate to the emitter. We

emitter. A "hump" can be seen on AH where the shift have shown that all three of the expected emitter sheath

speed hits 3.00. The arc-drop is lowest on this "hump" phenomena decrease the ion loss rate to the emitter. We

because die shift speed is at its maximum of 3.00. Be- cannot calculate the amount of trapped ions in a collision-

tween points Hand I the back sheath height remains equal less sheath without knowledge of the collisional pro-

to the sheath height. Ax - XE - X, - 0. On this segment. cesses. However, the experimental CV suggests that if the

a, decreases to 1.25, therefore increasing arc-drop, amount of trapped ions ( f,,) increases from 0 percent at
J - 14 A/cm- (the double sheath formation point) to 10From point Ito point J. the shift speed remains constant2.scudrul

at 1.25 and the ion loss rate decreases because of reflec- percent at J - 2 A/cm. then the steepness could result

tion. The other trapped cases f,, - 0.2. 0.3. and 0.4 have from trapped ions reducing the ion loss rite to the emitter.

am been connected because they hit the 3.00 maximum Since these percentages are based on a thermal distribu-

shift speed much sooner than in thef, - 0. 1 case. tion of ions. they seem physically reasonable. Unfortu-

Point J is the collector sheath failure point. Each of the nately. the collector sheath failure prevents us from going

I,, - 0.2. 0.3. and 0.4 curves begins at 4x, - 0 and ends to the point in the calculations where r drops enough to

at the collector sheath failure point. It should be noted that make surface emission the source of ions.
The experimental curve is nearly a constant 0.05 V be-

each of the trapped ion curves fails at a higher current
than the last because the shift speed is lower, low the isothermal result (0,, -1 .0) except at high cur-

rent densities and at the "hump.- Comparison of the
VI. EFFEcS OF EMErlr SURFACE EMISSION curves at high current density is not valid since neither

Fig. 12 shows the effect of surface emission on the f, the Schottky effect nor recombination has been included.
= 0.10 curve. surface emission is added by multiplying The Schottky effect is important above 12 A/cm in this

the actual small amount of surface emission in case I by case because the emitter sheath is single cltcrmn repel-
a factor of 100. This bring. the surface emission up to the ling (io the plasma) and therefore puts a strong electric
level im case 2. making it significant at J - 1.0 A/cm". field against the emitter with the appropriate sign. Recom-
It cam he seen that surface emission increases arc-drop: it bination is also potentially important because the plasma
does so in exactly the same way as reflection or trapped density scales with current density. and at high current
ions do-it decreases the net loss rate of ions to the densities the plasma density in the middle of the converter
emiter, approaches the Saha density. The 0.05-V difference may

or may not be explained by a discrepency in the assumed
VII. CoMe, Ano wIH EXP'ERIMENTAL RESULTS AND collector work function. At 750 K the collector emits es-

CONCLUSIONS sentially nothing and therefore any change in the collector

Fig. 13 mperimposes the isothermal results of Fig. 12 work function directly affects output voltage. If the col-
on the experimental results for a cesium reservoir tem- lector work function were in fact 1.65 instead of 1.60 V,
plat, of 551 K which produces a I-torr neutral cesium then the isothermal result would lie nearly on top of the

/'./
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ASYMPTOTIC SHEATH THEORY

The Asymptotic Sheath Theory developed under this grant is set forth in the following

paper.
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Few exact solutions for collisional presheaths exist because of the difficulty of simultaneously
satisfying both the collisional Boltzmann equation and the Poisson equation. The exact
solutions that do exist are for very specialized ccUision terms such as constant cross-section
charge exchange with cold neutrals. The present paper presents an asymptotic method which is
applicable to a variety of collision terms and is applied in particular to constant collision
frequency charge exchange with noncold neutrals. Constant collision frequency and constant
cross-section collision with cold neutral results are also presented. The first-order terms for the
presheath potential rise and ion distribution functions are calculated and it is shown that
second- and higher-order terms can be calculated using a multiexponential expansion for
presheath potential rise. The first-order cold neutral constant cross-section results correspond
well to the exact solution. The calculated presheath potential rises are of the order expected
from the Bohm criterion, and in some of the specialized cold neutral cases, exactly kT,/2. The
presheath potential rise is reduced by a neutral plasma potential gradient which accelerates
ions toward the presheath. In all cases the collisional presheath is asymptotically matched to
both the neutral plasma and the collisionless sheath.

L INTRODUCTION where U0 - ax is the assumed linear potential in the neutral
The majority of plasma-surface interaction work plasma and A U- a is the additional potential rise in the

matches a neutral plasma to a collisionless sheath without collisional presheath, as shown in Fig. 1. In this paper the
detailed consideration of a collisional presheath. However, convention used is that U - qO, where q is the electron
the collisional presheath structure is of great interest. Sheath charge and 0 is potential in electron volts so that U has units
theory, beginning with Bohm,' tends to assume that the plas- of energy. In addition, potential is defined in the reverse of
ma ion distribution is cold so that a minimum presheath the usual sigp convention so that increasing potential repels
potential rise may be calculated, which makes the collision- electrons- With these conventions, the Boltzmann equation
less sheath self-consistent. Harrison and Thompson' genera- can be written as
lize the Bohm criterion to noncold ion distributions; how- d 8! I df
ever, the result is sensitive to the density of the low energy - -i (2)
tail of the ion distribution, which in turn is strongly affected
by the collisional presheath. And, a second difficulty in the
absence of a collisional presheath is that the collisionless In Eq. (2) and those following, the ± denotes the sign of
sbcath and the surface beyond it may return no ions or a the charged species in question; the upper sign refers to posi-
'znthermal distribution of ions which the collisional pre-. tively charged ions and the lower sign to electrons. The
sheath must match to the neutral plasma region. Boltzmann equation is expressed in terms of AU, which will

Some exact solutions exist for presheaths; notable is the be the expansion variable in the presheath:
work of Ecker and Kanne3 and Riemann,' who derive exact
solutions for collision terms based on charge exchange with v$uAU ?±l(PAUU+a) a(8f3)
cold neutrals and Emmert er al.,' who derive an exact colli- JAU m dv \r "
sionless solution in which there is an ionization source. In
the present paper an asymptotically correct collisional pre- The distribution function is then expanded as
sheath theory is developed which can be applied to a less
restrictive range of collision terms. Potential in the pre- f-fo(v) + AUf,(V) + Af 2(v) + - (4)
sheath is expanded as a multiexponential series and the dis-
tribution functions are expanded in terms of presheath po- so that the derivatives are
tential rise. First-order approximations are calculated for
both constant collision frequency and constant cross-.section .f-ft(v) + 2AUf2 (v) + 3AU%( ) + "" (5)
charge exchange collisions. A ET

L FIrST-ORDER ASYMPTOTIC POTENTIAL an

FORMULATION ?_u. -fo (v) + AU (v) + AU' ()- + ". (6)
In this section it is assumed that the potential in the v dv dv dv

collisional presheath is of the form Substitution of (5) and (6) into the Boltzmann equation (3)

-Uo +AU-=ax+ c, (1) yields the terms

loG Phys Fhias30 (6). .kuMe 1N7 00314171/$7/0e1100-10SO1.90 V 1987 Afrftn kftute of Physics 1000
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M W ±! ( V)" [()- (7 a)

Mdav Md 0'V KTdi 'V

AU2:__ 2 df2 _ A_ f V a V ,ul(c
M dv Md drat '

in df 0' [~ Uldf\ 1,m d dv LdtcAU" (Td)

d 2U =4 4e f f ,(v,AU)dv - f. (v,AU)dv), (8)

where q is de electron charge. It is assumed that the ions are singly ionized for simplicity. The Poisson equation (8) is
expanded asexpanded as 4v)dv -F.(V)dv)AU + ( vdv- f (v)dv)&U2 ...I (9)

where charge neutrality at AU = 0 has eliminated the terms containingfo, and fo:

a=-f f.(v)dv - f.(v)dv.

The quantity . is the neutral plasma density of the asymptotic presheath, not of the neutral plasma.

01. FIRST-ORDER SOLUTION WITH A CONSTANT COLLISION FREOUENCY CHARGE EXCHANGE COLLISION TERM
The conant collision frequency charge exchange collision term is modeled as

(. -)- u.m.f.(v) "f ()du - (v) f. ()du). (10)

wheref. (v) is the neutral distribution andr is the collision time. Previous work has assumed cold neutrals and results in an in.
tegral equano which is solvable only for constant collision cross section.

A. Zero plum potental gradlent (a= 0)
In hseme Eqs. (7) become

1: - ) (u f. )du -f)f f. (u)d )

m f (11)

A U- 46f (11) + W, (u) du - 4,M(v) (u)duY

m D v _n.o () '.. f.- ) f .. f, (u)du/-f, (v) f. (du).

Underthe sumption that the neutral distribution is Maxwellianf. u) - n.vrm/2rT exp( - mu2/2kT), the solution to
(ll)is

In-Cf. (V),
A,(w) - (I/k Me (W), (12)

f.,(v) - (L/akTM . (v).

Thus
f, (VAU) - Ce"'9'*f. (V), (13)

which is the expected result. In this case the mean ion velocity is zero throughout the collisional presheath since charge
exchange collisions conserve ions and the mean ion velocity in the neutral plasma is zero. Thus, if a - 0, constant collision
frequency charge exchange collisions do not shift the ion distribution upward in velocity. This presheath can be matched to a
coilisionless sheath only if the colisionless sheath returns all the ions entering it from the :)is,.r a, preshea:h.

W'kh e'ec-r density assumed to follow

1901 PY0ye. PatS. Va. 30, No. 6. J 1967 Go"fr L Mam 801



n.(AU) = no  - AU/h ,.

the Poisson equation (9) yields, to first order,

p 2 = 4irq2no( l/kT+ l/kT,),

which is the length scale of the Debye length. Thus for a = 0 the collisional presheath is not distinct from the collisionless
sheath since there is no separate collisional presheath length scale.

B. Nonze pawna potential gradlent (asO)

Under this condition there is a net flux of ions from the plasma into the sheath, which allows the construction of a
colisional presheath that accelerates the ions and depopulates the ion distribution of returning ions. Thus the collisional
presheath may be correctly matched to the collisionless sheath which returns no ions. In this case (7a) and (T) can be written
as

& (v) "- (14a)

TIn+~1v k A&fl + E . (v) = -(Lf. (On, - ndj )] M (14b)

The solution to Eqs. (14) are

fo(v) = no exp (exp m-uf -- M d (15)

aT m ars V2rkT J..-~ 2kTczrJ
and

2 rc ,2) 16,56mv 2  mutflme 2  mu nmI m mu ( d U (16)
A~~ ~ ~ (- aCP - v x exp - t Idu.(16)k 2a ar/~ )~ [t/1 1rarT kk) a v' t  J

where

omf= - f°(v)dv (17)

and

if f (v)dv. (18)

The constant of integration in (t15) has been set so that fo goes to zero at fo goes to zero at w regardless of the
constant of integration. Equation (17) is immediately satisfied by (15). The constant of integration C in (16) must be set so
that (1S),which represents self-consistency, is satisfied. It can be seen from (16) thatf, goes to zeroat - co regardless
of the constant C. From (IS), then

x,"1'-'exp( J +[.f exp - -+ - -.)m.- : , -exp --2a Gr k2a ar 1,.lkT \ V dT/ v

x[.I-exp ')]'+ [f- exp 6mO- Tv) kexp "--' (u du dv]
m-,6-2 ar)Jo a 2a a v

x ex t(19)

The exponential sheath rise p is determined from the Poisson equation under the simplifying assumption that

S==A(20)

One might expect that the approximation should be n, - no exp( - U/kT ); however, this cannot be true in the asymptotic
presheath because n. must approach no as U approaches negative infinity. With (20) the Poisson equation (9) to first order
bewmes

2 - 4irq)(n, + n kT,). (21)

Since the ion density is only calculated to first order, the same will be done for the electron density in (20).
To obtain a particular solution it is assumed here that the collisionless sheath to which the collisional presheath is joined

at A U A U returns no ions. In particular,

r PuAU*)dv =0, (22)

"a Phlys. PU. Vol. 20, No. 6, jaM 1 N7 M Le oeMain 1902



or

r-fo(v)dv + AU ft (v)dv =0 (23)

and

f vf(vAU*)dv=O, (24)

or

_ vfo(v)dv + AU" -  l(V)dvu - 0. (25)

Because the approximation is only first order, it is not possible to impose the condition thatf(v) is uniformly zero for returning
ins. Equations (23) and (25) represent zero returning ion density and zero returning ion flux. When higher-order terms are
nacluded, the conditions of zero returning ion momentum flux, zero returning ion energy flux, etc., can be applied in succes-
ion. Equations (21), (23), and (25) are solved for n ,,6, and A U0, with all other quantities assumed constant. Equation (21)
immediately satisfies the Bohm criterion at AU - A U for the first-order approximation

n,o+ 0 /T. >0. (26)

The Poisson equation (21) can be written as

PL = 1 + kT(n,/no), (27)

where

A = F7kT/41rq'no (28)

is the Debye length. It i: e; pected that the length scale of the presheath should be of the order = /A , where A, is the ion
mean free path. In the circumstance that the Debye length is small compared to the ion mean free path, the product/6 zA ' is
small and

nJ = - nokT. (29)

The neutral plasma region is matched to the collisional presheath also at A U - A U, as shown in Fig. I, to produce a
three-scale uniform asymptotic solution. In particular, assuming constant collision frequencies, the momentum equations
become

I m, d dU m,r,
-- n- --- (30)R, n2  dX dX T"

and

f. \ dn n' mr. (31)
42e dx dx T",

where

comotl et'm Irwin

S- - . " " FIG. 1. Asymptotically c.mc potential in the coflfsional presheath.
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a On Io(I - AU*/kT), (32)

dn = ,6 AU*
dx kT,

and
dU a +,64U (34)
dx

The quantity n is the plasma density at the matching point A U* and r, and r, are, respectively, the ion and electron net fluxes.
Nondimensionalization results in

A = (ar/m)4m/2kT, (35)

B = fkT/a, (36)

A. - 7",7, (37)

v m- /2k Tv, (38,

where A and R, are the parameters and B is a function ofA and R,. The quantity A represents the nondimensional asymptotic
presheath potential gradient, B represents the nondimensional exponential presheath rise, R, is the electron to neutral
temperature ratio, and w is the nondimensional velocity. The distribution functions can then be written as

f o (v) exp(- w/A) r ex p ( 2 + I)d "  (39)
nobfm/2T fA J . A/

and

F, (w,Bj) A A(v)
(n0o/kT ),,m2kT

~") _~Lexp( )
SO exp( - B°' - /A) ffexp(BP 2+ _t-2xp ) '

-RB [-L exp (-2) -- Lexp(--A)f exp(- ,' +-YV2 dnhld.+ (40)

where

+ .R '" exp(- B - .IL) f eXp( 2+ .L)A A
x ( exp( - t')~ - exp( - .)f exp( -7 2 + M!Ld7Idt dwIJ exp(. ~] (41)

Thus (23) and (25) become

r Fo((,.4)dw +AU F, ( 4 B)dw 0 (42)

ad

- a U" rwowdd U woFs, W..B) dw -0. (43)

Figure 2 presents the presheath potential rise A U "/kTo and the nondimensional exponential rise B as a function of the
nondimensional asymptotic presheath potential gradient A for a range of electron to neutral temperature ratios R,. As would
be intuitively expected, the presheath potential rise decreases with increasing A. Figure 3 presents the ion distribution
functions at the neutral plasma-collisional presheath interface Fo(w), the first-order correction to the distribution function
F, (w), and the resulting distribution function at the collisional presheath-collisionless sheath interface Fo(aW) + A U OF, (w).
Although the resulting distribution is not uniformly zero for w < 0, its net returning density and flux are zero by (42) and
(43). It is expected that higher-order corrections to the distribution function and potential with the corresponding application
of higher-order moment conditions of zero returning momentum, energy. etc., will converge the returning distribution
function toward a uniform zero.

In the limit of cold neutrals, the constant collision frequency charge exchange solution is considerably simplified. Equa-
dons (14a) and (14b) become

1l04 Iy F kW, Val. 30, No. 6, JUN tN7 G(offrey L Main 1804
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AM nO(m/dr)exp( - mu/dr), a>0, (6
10. < 0,

and

66,,w mv)[C- +-l fmV x fu l(mu]. v > 0,
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such the

C -C (m/a-r) In, - (fl/a)nol. (48)

Equation (46) immediately satisfies no - " .jo(v)du. No returning ions implies that

C- =0 (49)

and

C (W/ar) In, - (P/a)no] (50)

sincefo m v < 0 is already zero. The final condition is then that n1 = fo'fl (v) dv, orno p( '6 'v["T-'-+n- x( &(1
- a' a a ar a (Tr 'fm 2

The applictito f -s/k T. yields

PAT £ xp _ fla 2 2 flr/sa?- 2 ,~r 2fi/$ar2- (.52)
-. l X it -t f f exp(J itT m (2

In this case, AU is defined by
fo(o) + AUf (0") " o, (53)

which yielis

AU*IkT,= /(BkT./a + 1), (54)

as expected. In the limit of a/2m -0 we have
PkT./a - 1 (55)

and

AU"- kT/2, (56)
which corrsIonds to the obm criterion. Figure 4 presents the variation of B = 6kT/ a, with Aar2/2m for the cold neutral
case. A pandakr for the parameters can be conveniently found by drawing a line from the origin, with slope 2mk T/oa 2 ,

so that the anectom a the solution. Figure 5 presents an example cold neutral ion distribution. Examination of the ion
distnbution fraction at v - 0 shows that the slope is discontinuous. This is because the neutral source is a delta function at
S-=0. It aPp that the Bohm criterion cannot be satised at AU* because the integra f' Lf'v)/v ]dv is singular, however,

the me of tk integral in the Bohm criterion assumes that the ions accelerated are not replaced. In this case the ions
accekrstd fam u - 0 are replaced by tons from the cold neutral distribution which, of course, is a delta function at v = 0.

IV. FIRST-ORER SOLUTION WITH A OUASICONSTANT CROSS-SECTION COLLISION TERM
First=.i asymptodc solutions can also be developed for a quasiconstant cross-section collision term

(Z). =ef:.f.(v)Au),- utdu - fvt.(u)jv- uldu). (57)

t o! 00.FIG. 4. Couarn coUsaoc frequency presheath
rim with cold neutnis.
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Tis collision term is not really constant cross section because it is a one-dimensional representation which does not take into
account average velocities in the other two dimensions. However, this collision term corresponds to that commonly called
constant cross section. The application of this term leads to a set of integro-difrerential equations which can be at least
approximately solved, and in the cold neutral case it leads to readily soluble fi'st-order differential equations. The cold neutral

case presented here corresponds to that which can be solved exactly (Riemann4 ). Unfortunately, though, the exact solution
method is not extensible to noncold neutrals. The cold neutral collision term is

( ), , on.6(v) f.u) IuIdu-,,lv)n.Iv1 (5)

and the zero-order Boltzmann equation term (7a) becomes

-1(u) = on6f(v) j.fo(u)u.ldu - on. vlfo(v). (59)

for which the solution is

x( e -= V2), v >0,

fo(v) - 2 (60)
V<C.

The firt-order Boltzmann term is

+ A L?) +j() + (U) -OnA6V) f,(uluIsldu - on. Iif1 (0, (61)

for which the solution is

(2 a a m m r a A 1 (62)

The jump condition at v 0 must be satisfied in (61):
. _.mn. f" f2u uadunn (61 ,

a f-a 17 ;! Ea
No returning ions, C - = 0, and the application of (63) to (62) yields

C' - -- no(1/a)7iomn./a. (64)

The collisional presheath-collisionless sheath boundary A U* is again

w1107 P l. F .Vol. 30, No. 4. June 197 Goffrey L. Main 1807
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-OflO- ) fo(O) +AU'f, (0), (65)

which yields

AU*/kT, = a/kT.. (66)
Equation (62) is integrated to

n f 1 ()dv .(""" 1 _ fT 7 ) (67)

and applied to the Poisson equation (8) to produce

\on3  k T-. on.j~~V u 3
Under the assumption that the Debye length is short compared to the ion mean free path,

(4rq no/kT.)2( i/an. )2, 1,

Eq. (68) results in

6 Ion. -- a/n.okT (2 + a/n.kT ) (69)

and

AU/kT, - 1/(2 + a/n.okT,). (70)

The Bohm criterion is satisfied at AUO to the first order by virtue of (68). And interestingly, the presheath potential rise for
a - 0 is exactly that required by the cold ion Bohm criterion. Figure 6 presents the results for cold neutrals with a/n okT,
- 1. From the ion distribution at AU", the mean ion velocity into the sheath can be determined to be V - 1.Wk6,/m,

while the elact solution of Riemann gives 6 = 1.27 j ,k/m,; thus the first-order asymptotic result appears close.

V. CONCLUSIONS

It has been shown that approximate collisional presheath solutions can be obtained for a variety of collision terms. In
particular the constant collision frequency case has been solved approximately, whereas previous attempts at exact solutions
have found this case intractable. In addition, it has been shown that higher-order corrections can be made a regular and
tractable fashion. Also the return of ions from the collisionless sheath can be treated.
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APPENDIX: MULTIEXPONENTIAL FORMULATION

In the previous sections we have calculated only the first-order terms in the ion distribution and presheath potential rise.
Also, we have implicitly made the same first-order approximation for electrons:
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a* -ue(I - AU/kT,). (Al)
A complete multiexponential expansion can also be constructed that correctly calculates the second- and higher-order terms.
Potential in the presheath is

U= Uo + AU+aU 2 +a AU 3 + .., (A2)
where Uo -ax and AU-- exp(fx). Thus

dU i,+OAU+ 2&2AU2 + AU3 + U3 (A3)
dx

and
d(AU) PAU

dU a +RAU+ 2 2AU2 + 3fla 3 U
3+ 

(M-

which trainforms the Boltzmann equation

into

r'AU/L(v) ( (a +PAU+ 2 W 2 1& +,,5.. (v) =( , (A6)

or

: -a- (v) = , ta ) I (A7a)

AU: vif 1(u) ± A c.v) + ± E_,U) (( (A7)
Mdav M av 'Hf ,

AU2: 2vflf 2(Wv ± f- (v) A±--(V) E±--(V) f W-O(Acdv MdOv Md Kd ),AV,

R&. afoj (n - Ota,. (v) adf, af /dAU': nvf'(v) T- (v) ± -(- ± ---- () ±--() [(-Hm dv M cvm v Md L'dt/JA U-
(A7d)

The Poisso equation (8) becomes
'D. Bohm. in Characteriscs of Electrical Disc a ges in Magnetic Fields,

2 )-AU + (3)2asA U + ... edited by A. Guthrie and R. Wakering (McGraw-Hill. New York, 1949).
P. 77.=41AU( f, (v)dv - f (v)dv) E R. Harrison and W. B. Thompson. Proc. Phys. Soc. London 74, 145

. (1959).

'G. Ecker and H. Kanne. Z. Naturforsch. Teil A 21. 2027 (1966).
+ AUZ fA (v)dv - f2 (v)dv) + 'K. U. Liemann. Phys. Fluids 24.2163 (1981).

-- 'G. A. Emmen. R. M. Wieland, A. T. Mense. and J. N. Davidson. Phys.
(AS) Fluids 23, 803 (1980).
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THE TEC PROGRAM RESULTS

The TEC program results shown here incorporate the asymptotic presheath work and

give good agreement except at low current density. This disagreement is still not under-

stood.
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Comparison of TEC Program Results to Experimental Data

Reference: Advanced Thermionic Technology Program, Vol. 4, Oct. 1984. Thermo

Electron Corporation, DOE/ET/11292-2
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TEC INITIAL DATA SUMMARY
------------------------------------------------------------------

PHYSICAL OPERATING CONDITIONS -----

EMITTER TEMPERATURE (TE)= 1700.0 KELVIN
COLLECTOR TEMPERATURE (TC)= 773.0 KELVIN
EMITTER WORK FUNCTION (EWF)= 2.642 EV

COLLECTOR WORK FUNCTION (CWF)- 1.630 EV
CONVERTOR PRESSURE (PN)- 1.541 TORR

GAP THICKNESS (D)- 0.254 MM
OPERATING CURRENT (J)- 2.000 AMPS/CMA 2

TEC FUNCTION SETTINGS -----

DIAGNOSTIC LEVEL (CHKDOT)- 1
RESTART SEQUENCE (OFILE)- 0

1.50 POINT DENSITY (N)- 11

PHYSICAL PARAMETERS EVALUATED -----

RICHARDSON CURRENT (JRIC)= 0.51E+01 AMPS /CMA 2
REFERENCE DENSITY (NR)- 0.10E+15 1/CMA 3

CHARACTERISTIC TIME (TCHAR)- 0.0208 SECS*E-0-6
NONDIM CURRENT (1)- 0.0196
NONDIM EMISSION (ENR)- 0.008(NRIC/NR)

1.00

Qi)

0

0.50

0.00 100.00 200.00 300.00 400.00 500.00
T in Charcteristic TimeI

3/ __ ____ ____ _____ ____ ____



TEC INITIAL DATA SUMMARY

---------------------------------------------------

PHYSICAL OPERATING CONDITIONS -----

EMITTER TEMPERATURE (TE)= 1700.0 KELVIN
COLLECTOR TEMPERATURE (TC)= 773.0 KELVIN
EMITTER WORK FUNCTION (EWF)= 2.642 EV

COLLECTOR WORK FUNCTION (CWF)= 1.630 EV
CONVERTOR PRESSURE (PN)= 1.541 TORR

GAP THICKNESS (D)= 0.254 MM
OPERATING CURRENT (J)= 2.000 AMPS/CM^2

TEC FUNCTION SETTINGS -----

DIAGNOSTIC LEVEL (CHKDOT)= 1
RESTART SEQUENCE (OFILE)= 0

POINT DENSITY (N)= 11

PHYSICAL PARAMETERS EVALUATED -----

RICHARDSON CURRENT (JRIC)= 0.51E+01 AMPS/CM^2
REFERENCE DENSITY (NR)= 0.10E+15 1/CM^3

CHARACTERISTIC TIME (TCHAR)= 0.0208 SECS*E-06
NONDIM ClJ±RENT (I)= 0.0196

NONDIM EMISSION (ENR)= 0.008(NRIC/NR)
KNUDSEN NUMBER (KN)= 0.0791

SQRT(MASS RATIO) (SMR)= 0.0020
MEAN FREE PATH RATIO (LAMDAR)= 0.3344

TIME SETTINGS-----
NSTEPS= 1

T2= 500.0
DELTAT- 1.000

DTP= 1.000
LSF= 10

RESULTS AT TIME - 0.00 OPERATING VOLTAGE= 1.074

ENE = 0.027 ECHI- 6.241 EALPHA= 0.460
CNE = 0.000 CCHI- 6.734 CALPHA= 0.482
PHIB- 0.000 VD w 0.422 EMISS =.268E-01

# NDOT(#) NEB(#) TDOT(f) TAUM()

0 0.0015 -0.154 -0.0526 1.52
1 -0.0151 0.298 -0.0537 1.52
2 -0.0158 0.661 -0.0555 1.51
3 -0.0141 0.943 -0.0569 1.51
4 -0.0122 1.145 -0.0582 1.50
5 -0.0104 1.267 -0.0594 1.50
6 -0.0088 1.309 -0.0608 1.50
7 -0.0072 1.271 -0.0623 1.49
8 -0.0058 1.153 -0.0641 1.49
9 -0.0050 0.953 -0.0665 1.48

10 -0.0083 0.670 -0.0698 1.47
11 -0.0340 0.270 -0.0768 1.45

3



12 -0.0704 -0.551 -0.0807 1.43

RESULTS AT TIME - 100.00 OPERATING VOLTAGE= 0.982

ENE - 0.098 ECHI= 3.183 EALPHA= 0.617
CNE - 0.000 CCHI- 3.069 CALPHA= 0.719
PHIB- 0.000 VD = -0.203 EMISS =.981E-01

# NDOT(#) NEB( ) TDOT(#) TAU(#)

0 0.0003 -0.035 0.0001 1.14
1 -0.0007 0.081 0.0001 1.13
2 -0.0018 0.200 0.0000 1.11
3 -0.0028 0.316 -0.0001 1.10
4 -0.0037 0.419 -0.0001 1.09
5 -0.0043 0.501 -0.0002 1.08
6 -0.0047 0.552 -0.0003 1.07
7 -0.0046 0.562 -0.0003 1.06
8 -0.0043 0.524 -0.0004 1.05
9 -0.0035 0.431 -0.0005 1.03

10 -0.0022 0.281 -0.0006 1.01
11 -0.0006 0.074 -0.0008 0.97
12 0.0013 -0.170 -0.0009 0.95

RESULTS AT TIME - 200.00 OPERATING VOLTAGE- 0.946

ENE - 0.232 ECHI- 2.324 EALPHA= 0.587
CNE - 0.000 CCHI- 2.167 CALPHA= 0.750
PHIB- 0.000 VD - -0.448 EMISS -.232E+00

# NDOT(M) NEB(#) TDOT(#) TAU(#)
-----------------------------------------------
0 0.0001 -0.014 0.0006 1.19
1 -0.0003 0.034 0.0008 1.19
2 -0.0007 0.084 0.0008 1.17
3 -0.0011 0.134 0.0008 1.15
4 -0.0015 0.179 0.0007 1.13
5 -0.0018 0.216 0.0006 1.11
6 -0.0020 0.240 0.0005 1.09
7 -0.0020 0.247 0.0005 1.08
8 -0.0019 0.232 0.0004 1.06
9 -0.0016 0.193 0.0002 1.03

10 -0.0010 0.127 0.0001 1.00
11 -0.0003 0.033 -0.0002 0.93
12 0.0006 -0.081 -0.0003 0.90

RESULTS AT TIME - 300.00 OPERATING VOLTAGE- 0.910

ENE - 0.526 ECHI- 1.440 EALPHA= 0.551
CNE - 0.000 CCHI- 1.374 CALPHA- 0.754
PHIB- 0.000 VD - -0.698 EMISS -.526E+00

# NDOT(#) NEB(#) TDOT(#) TAU(M)
-----------------------------------------------
0 0.0001 -0.006 -0.0001 1.23
1 -0.0001 0.015 0.0007 1.27
2 -0.0003 0.036 0.0012 1.27

33



3 -0.0005 0.057 0.0013 1.25
4 -0.0007 0.077 0.0013 1.22
5 -0.0008 0.093 0.0012 1.20
6 -0.0009 0.104 0.0012 1.17
7 -0.0009 0.107 0.0011 1.15
8 -0.0009 0.101 0.0009 1.11
9 -0.0007 0.085 0.0008 1.07

10 -0.0005 0.056 0.0006 1.02
11 -0.0001 0.014 0.0003 0.93
12 0.0003 -0.038 0.0006 0.90

RESULTS AT TIME = 400.00 OPERATING VOLTAGE= 0.763

ENE = 0.879 ECHI= 1.392 EALPHA= 0.420
CNE - 0.000 CCHI= 0.914 CALPHA= 0.541
PHIB= 0.264 VD = -1.960 EMISS -.114E+01

# NDOT(#) NEB(#) TDOT(#) TAU(#)
0 0.0000 -0.002 0.0037 1.46
1 0.0000 0.007 0.0061 1.66

2 -0.0001 0.015 0.0077 1.76
3 -0.0002 0.024 0.0081 1.77
4 -0.0003 0.032 0.0082 1.75
5 -0.0003 0.038 0.0082 1.72
6 -0.0004 0.042 0.0081 1.68
7 -0.0004 0.043 0.0079 1.63
8 -0.0004 0.041 0.0076 1.58
9 -0.0003 0.034 0.0072 1.51

10 -0.0002 0.022 0.0068 1.42
11 -0.0001 0.006 0.0066 1.29
12 0.0002 -0.015 U.0086 1.35

RESULTS AT TIME = 500.00 OPERATING VOLTAGE- 0.632

ENE - 1.001 ECHI- 1.516 EALPHA= 0.371
CNE - 0.000 CCHI= 0.348 CAL.PHA= 0.433
PHIB= 0.352 VD = -2.945 EMISS =.142E+01

# NDOT(#) NEB(#) TDOT(#) TAU(#)
--------------------------------

0 0.0000 -0.002 0.0001 1.59
1 0.0000 0.006 0.0002 1.88
2 0.0000 0.012 0.0003 2.04
3 0.0000 0.019 0.0003 2.06
4 0.0000 0.024 0.0003 2.05
5 0.0000 0.029 0.0003 2.02
6 0.0000 0.031 0.0003 1.98
7 0.0000 0.030 0.0003 1.93
8 0.0000 0.027 0.0003 1.87
9 0.0000 0.021 0.0004 1.79

10 0.0000 0.013 0.0004 1.69
11 0.0000 0.003 0.0008 1.61
12 0.0000 -0.007 0.0019 1.90
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APPENDLX A - Fokker Planck Collisions Presheath

This theory has been developed under this grant and is found to be applicable to fully

ionized plasmas but was not incorporated into the Thermionic Convertor work due to its

computational complexity.
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R - Radial velocity component

t - Time

- Ion temperature

T. - Electron temperature

T(r) - An m x tn matrix
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Subscripts:

c - Collision term

s - Electron

i - Ion

- Order of expansion

Superscripts:

,- Particle species with which collisions occur

* - Nondimensional
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SUMMARY

The Maxwellian sources and charge exchange terms used to model particle inter-

actions in current presheath models do not represent the Coulomb collisions taking

place in fully ionized plasmas. These models approximate the collisional effects in

the presheaths of partially ionized plasmas but are used to implicitly extrapolate

the interesting case of fully ionized plasmas. The present study uses a Fokker -

Planck collision term which models the limit of the small angle Coulomb collisions

that occur in fully ionized plasmas. Normally these small angle collisions dominate

the particle interactions of fully ionized plasmas. The Boltzmann equation coupled

with the Fokker - Planck term, and the Poisson equation have been expanded using

an exponential asymptotic technique. These equations have been solved numerically

to determine the time dependent evolution of the presheath. The results presented

show the presheath potential structure and particle distribution in velocity space.

The model produces a self-consistent and accurate potential structure. The particle

velocity distribution in the presheath has the correct acceleration of ions toward the

wall but because the Fokker - Planck collision term only models the limit of small

angle collisions it is unable to clear the particle distribution of returning ions. The

colUsional processes become dominated by the effects of the large angle collisions as

the Debye sheath edge is approached. This study has found that a presheath model

which describes the Coulomb collisions occurring in a fully ionized plasma must

account for both the small angle and the large angle particle collisions to explain

the clearing out of returning ions that must exist for the transition to an absorbing

wall.

-. Lt 14



CHAPTER I

INTRODUCTION

The interaction of man and plasma, in some form, exists at almost all levels

of society. A plasma is an ionized gas that has a collective behavior in an electro-

magnetic field. Plasmas exist in everyday devices like fiourescent lights, neon signs,

and electric arc welders. An understanding of the basic behavior and interaction of

plasmas is essential to the advancement of all current plasma applications and to

the discovery of new applications. This thesis involves the study of how a plasma

interacts with the walls and surfaces with which it comes in contact.

Why is it important to understand plasma - wall interactions? Two basic reasons

answer this question. First, a plasma has a strong effect on any surfaces it comes

in contact with. The high temperature plasma can erode or destroy any surface

quickly pitting and changing a wall which may need to maintain a particular profile

or surface condition. Secondly, the wall affects the characteristics of the plasma.

A surface r =n have a profound effect on the plasma depending on the amount and

rate at which it can absorb energy. Examples of situations in which plasma - wall

interactions are of importance include:

* Diverter plates in magnetic confinement fusion reactors.

" The rails in a plasma rail gun.

" Any body ( like the space shuttle) upon reentry to the atmosphere.

" Plasma switches.

" Plasma etching.



2

Almost every other use or occurrence of plasmas.

This study is primarily applicable to fully ionized plasmas. The hot tempera-

tures necessary to produce fully ionized plasmas occur only in situations like on the

surfaces of diverter plates in Tokamak fusion reactors.

The development of a mathematical model to represent the plasma - wall in-

teraction region, or sheath, and a numerical solution to this model is the focus of

this thesis. An understanding of the interaction between the plasma and the wall

i achieved with a time dependent solution to the sheath region. If the potential

structure and the particle velocity distributions are known for every location in the

sheath then the energy going into the surface can be determined. In this way the

results of this study can be used as a boundary condition for problems involving

plasma charcteristics and for problems invloving the surface physics of plasma

devices.

4(L
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CHAPTER 11

BACKGROUND

A plasma will naturally maintain itself in a neutral and field free state. Ap-

plication of forces and processes that try to alter the equilibrium are resisted by

the plasma. A surface within a plasma that is not at the same potential as the

plasma will be shielded from the remainder of the plasma by a sheath. The outer

edge of this sheath is nearly at the plasma potential. BohmnIl[ first came up with a

criterion to determine the extent of the sheath. Bohm modeled the sheath region

as completely collisionless. He also considered that the transition region from this

collisionless sheath to the plasma was too small to be important.

More recent work has been done to describe this transition, or presheath, region.

Sellf[1 has an exact solution to the sheath equation and has shown that the collision-

less sheath makes a transition directly to the neutral plasma in the limit as A -# 0,

where AD is the Debye length and L is the plasma dimension. Emmert et al.131 has

determined a presheath structure based on the assumption of a Maxwellian source

of ions to model the particle collisions. The solution to this model shows that the

transition point from the sheath to the presheath has a finite electric field strength.

Bissel and Johnson['I have perfomed a similar solution using a Maxwellian source of

ions. In contrast to Emmert et al., Bissell and Johnson have found that the electric

field strength becomes infinite at the sheath edge. This solution agrees with the

fluid and cold ion models. In a recent paper Bissell[31 shows that Emmert obtained

a finite electric field strength because the Maxwellian source term used produced

no ions at the point of zero velocity. Bissell and Johnson used a more realistic

- 141
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Maxwellian source that produced ions at the zero point in velocity space for their

solution.

Another approach to the problem involves the use of a charge exchange term to

model the particle collisions. Riemannl61 has produced results using this technique.

In a recent paper by Main[7 J a charge exchange model is used to obtain a solution

to the presheath potential structure and particle distribution. This model involves

an asymptotic approximation of the plasma equations. The Boltzmann and Poisson

equations are asymptotically expanded and then solved analytically when combined

with a charge exchange model of the particle collisions.

All of these sheath and presheath solutions have modeled particle collisions by

large instantaneous changes in particle velocity. These models do not represent the

Coulomb collisions occurring in the presheath of a fully ionized plasma.

The current study extends the asymptotic solution presented by Main T to in-

clude a Fokker - Planck collision term instead of the charge exchange term. Unlike

the previous collision terms used, the Fokker - Planck term describes the Coulomb

collisions that exist within a fully ioaized plasma. The addition of the Fokker -

Planck term necessitates the use of numerical techniques, rather than analytical

techniques, to obtain a solution. In using the Fokker - Planck term the collision pro-

cesaes are being modeled directly. The model developed obtains the time dependent

evolution of the presheath for a fully ionized plasma.



CHAPTER III

MODEL FORMULATION

3.1 Concepts

In order to have a complete understanding of the problem at hand certain

concepts need to be presented which will help in understanding the overall structure

of the model.

1) Debye Length (AD) - The shielding distance beyond which the particle charge

effect is weak. This is the natural charge separation distance. Negatively charged

particles become surrounded by positively charged particles and vice versa, thus,

balancing the overall charge at any point ( see figure 3.1 ). There is a point beyond

which a particle is not effected by the specific charge but responds to the influence

of the entire plasma. The thermal effects in the plasma become dominant over the

electric field strength.

2) Mean Free Path (A,) - The average distance a particle travels before its

trajectory has been altered by ninety degrees. The mean free path is a function of

the density of the plasma. The denser the plasma the shorter the mean free path.

For the plasma under consideration in this study Ai, >> A.

3) The coordinate system used to describe the plasma - The coordinate system

used in the model is known phase space. In this system any point is described

using three position coordinates and three velocity coordinates. Any orthogonal

coordinate system, cartesian, cylindrical, spherical, can be used to describe both

the position and the velocity components.

q q
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4) Distributions and Distribution Functions - Plasmas are studied in a collective

sense. The motion of the entire plasma and not individual particles is described

by the model. Therefore, the velocity of the plasma at any given location must be

described by a distribution. The distibution function describes the overall particle

velocity distibution.

5) Potential - Ia a plasma the wall potential is greater than the neutral plasma

potential. The lighter, thus, faster electrons are absorbed by the wall faster than

the heavier and slower ions. A net positive charge exists near the wall, increasing

the potential ( see figure 3.2 ). The potential at the physical interface between

the wall and the plasma is dependent on the rate at which ions are absorbed by

the surface. In this study U = -e4 where e is the electron charge and 4 is electric

potential in electron volts so that U has units of energy. The addition of the negative

sign defines potential in the reverse of the usual sign convention so that increasing

potential repels electrons.

6) Collision Possibilities using the Fokker - Planck Collision term - To describe

the overall sturcture of the sheath the various collision possibilities must be included

in a comprehensive model. The Fokker - Planck term describes the four major

collision possibilities.

1) Ion - Ion

2) Ion - Electron

3) Electron - Ion

4) Electron - Electron

The collision model does not take into account thr e body collisions. Three

body collisions are very rare, as such, the model is not hampered by the lack of

-* 50
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terms to describe these collisions.

3.2 Wall Region Model

The model of the Plasma - Wall region can be broken into three areas.

1) Neutral Plasma Region (O(L)) - The neutral plasma region represents the

majority of the system and can be considered to have a physical width that is on

the order of the overall dimension of the system, L. This region is considered to be

fully collisional. The velocity distribution is near Maxwellian and as such can be

modeled by fluid type equations ( see figure 3.3 ).

2) Debye Sheath Region (O(AD)) - This region is a very thin area directly adjacent

to the wall. It- width is considered to be on the order of a Debye length and since

k->> AD no collisions are expected in this region. This collisionless sheath was

first modeled by LangmuirsI and Bohmll and is considered very well !Mown end

understood.

3) Collisional Presheath Region (0(>,)) - This is a transition region between the

collisional neutral plasma and the collisionless Debye sheath region. It is considered

to have a physical width on the order of a mean free path. Therefore, collisions are

expected but at the same time the region cannot be considered fully collisional.

The potential must transition from a lower level in the neutral plasma to a

higher level at the wall. The goal of this study has been to obtain a time dependent

model of the evolution of the presheath region which asymptotically approaches the

known potential in both the neutral plasma and in the Debye sheath region.

In order to show the validity of the three region model an example of Debye

sheath width in relation to the overall wall region is appropriate. For this example
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average hydrogen fusion plasma characteristics have been assumed:

T = 103K

no = 10 2 0 m - 3

If the Debye length within this plasma is calculated an order of magnitude value

for the Debye sheath width is determined. An appropriate equation for the Debye

length in meters is:11

Ao = 69(- - (3.1)

From this equation:

AD =. 2.18 X 10-5m

The overall sheath width is on the order of a mean free path. An appropriate

equation for the mean free path in meters is:1ol

A, = 1.2 x 10-4-L ( L 2 ni - 1  (3.2)

For a singly ionized plasma Z = I. Using this equation and the above example

plasma characteristics the mean free path can be calculated.

A= 1.14 x 10-2m

This is an order of magnitude estimate value for the width of the entire sheath

region. Since the Debye sheath width is on the order of a Debye length it can be

seen that the rollisionless sheath is very thin in comparison with the entire wall

region.

In order to obtain an idea of the importance of the electric field in the wall

region an order of magnitude analysis is useful. The magnitude of the electric field

is proportional to the thermal energy per length scale.

E !T (3.3)

z

9
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In the sheath region the length scale is the Debye length.

AD

Therefore, in this region the electric field is very significant since AD is very small.

The collisional effects are small in comparison, and can be neglected.

In the presheath region the length scale is the mean free path.

E (3.5)

Therefore, the electric field strength is on the order of the collisional effects making

both important factors within this region.

In the neutral plasma region the length scale is the overall system dimension.

E k2!T- (3-6)
L

Therefore, the electric field is very weak and can be neglected in comparison with

the collisional effects.

3.3 Presheath Model

3.3.1 Equations Describing the Collective Behavior of a Plasma

The primary equation used to describe the behavior of a plasma is the Boltz-

mann equation. The Boltzmann equation represents the collective motion of many

charged particles moving in an electromagnetic fieldi11 l.

Ft a/z maz av at+" o' a,,j "(- } (3.7)

Where the + sign is for ion particles and the - sign is for electrons. In the Boltzmann

equation f is the particle distribution function, and is defined such that n - u dv.
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The quantity t is time, ,v is a velocity vector, z is a position vector, m is the particle

mass, and U is the potential. The term on the right hand side represents particle

collisions and :an take on various forms depending on the model being used.

Another important equation in describing the bahavior of a plasma is the Pois-

son equation. The Poisson equation is the elementary definition of potential as the

collective effect of charged particles on a point[71.

d- ' rq2 f,(V, ,U) dU - ' f.(u, &U) d , (3.8)

Where q is the elementary charge, the subscript i refers to ions and the subscript

d refers to electrons. The term in brackets is the ion - electron density difference.

The potential is the driving force in the Boltzmann equation. The Poisson equation-

relates the potential to the particle distribution.

To complete the set of equations necessary for a full description of the presheath

a collision term must be chosen to model the particle interactions. This study uses

the Fokker - Planck collision term to model the particle collisions. The Fokker -

Planck term represents the right hand side of the Boltzmann equation[!"1.

{( I - r~ a Q(M_2_,2g) I ia2 Qva2 N 1 (3.9)

Where,

r q2 q'2 In A(3.1U)

g(/) ff( (') I v - ' I du' (3.11)

M MMI(3.12)
M r

Where M is called the reduced mass. No superscript refers to the particle species

undergoing the collisions and the superscript i refers to the particle species with

which the collision occurs.

-.-
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The Fokker - Planck equation describes the Coulomb collision between two

charged particles. Certain restrictions and assumptions are made when using the

Fokker ' Planck collision term. First, it best describes fully ionized plasmas. The

collision term models charged particle interaction and is most accurate for plasmas

with few neutrals. This situation occurs only on the hottest of plasma surfaces like

the diverter plates in Tokamak fusion reactors.

The second restriction involves the type of collisions that the Fokker - Planck

term models. The overwhelming majority of particle collisions lead to only small

deflections in the particle trajectories. The Fokker - Planck term describes the limit

of these small angle deflections. Finally, the model does not take into account three

body, and higher order, collisions.

3.3.2 Solution Conditions

The three equations presented in the previous section in conjunction with the

asymptotic forms of potential and velocity distribution provide the necessary infor-

mation to determine the presheath structure if two additional conditions are met.

First, if the equations are written in cylindrical coordinates the particle velocity

distribution is axially symmetric. There is no theti, 0, dependence of the velocity

distribution. Cylindrical coordinates are used for both the velocity and the position.

The '' direction is perpendicular to the wall (see Figure 3.4) with the positive

direction being defined into the wall. The coordinates R, 9,z have been used in

velocity space for convenience.

The second condition for a solution to these equations involves an assumption

of the particle velocity distribution parallel to the surface. For this model the

radial velocity distribution has been assumed to take the form of a Maxwellian

distribution. In addition, the temperature in the radial direction has been assumed
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to be uniform and constant at all 'z' locations. Thus, the radial velocity distribution

is constant for any position. Figure 3.5 is a schematic of these conditions. Note

that at any 'z' location and rotation angle, 0, the radial velocity distribution is

constant and follows a Maxwellian distribution. This represents the conditions of

uniform temperature and axial symmetry, throughout the wall region. Figure 3.5

also shows a representation of the point of no returning ions. This is the point

where the presheath transitions to the collisionless sheath.

The conditions of uniform temperature and radial Maxwellian distribution al-

though good approximations are not exact models of the real situation.

The overall problem reduces to one dimension, the z direction, with the above

conditions. The e dependence having been removed by the axial symmetry and the

radial depende,,ce having been removed by the Maxwellian assumption. This one

dimensional problem can be solved by staight forward numerical techniques.

3.3.3 Expansion of the Boltzmann Equation

The presheath model involves the expansion of the potential and velocity into

asymptotic approximations. The potential is assumed to follow an exponential

asymptotic form.

U = o+a&AU+a 2 AU2 +-. (3.13)

where

Uo = z and AU - go (3.14)

ata2... are parameters which describe the potential structure. Alpha, a, is non-zero

for a non-zero potential gradient in the neutral plasma. AU is called the potential

expansion parameter.

The particle distribution in velocity space is a function of potential and can be

o-
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similarly expanded.

f(u, &U) -fo(v) + AUA(V) + AU 2f 2( V) +.. (3.15)

The Boltzmann equation can be written as

af+ a! a(U) . aU af a!
at a(Au) az m =z (.at

where * sign is respectively positive for ion particles and negative for electrons.

The potential U has units of energy and is defined as shown in figure 3.3 such that

U = -e4 where 0 is electric potential. The Boltzmann equation can be expanded

using equations 3.13 and 3.14. In addition since the solution is one dimensional in

velocity space the velocity derivatives reflect only the '' direction. The following

expansions are used.

aL M+& fl+&UM .. (.7
at atat

---- f, + 2AU 2 + 3AU 2 
3 +. (3.18)

a(AU)
(A)= PAU (3.19)

az
au , ,AU + 20,&U2O + 3,#=a3&U +.. (3.20)ax

- a + &U f- + 4U 2 f + (3.21)

Using these expansions the Boltzmann equation can be broken down by order in

AU assuming the collision term can be likewise broken down:

1: - j• a = A , (3.22a)
at m as "at

a, 1  a a , #,_ z a,0  ra!]
AU:,, a - [} (3.226)

AU2. af2 + ,z2 a af2 * at 1 fI* 2#a2 L-0 L~ 132c

. L4 f.U,,

AU-: -tj+n8zI -S---*!L---'-

(n - i~ a - a f, d: 1 ! a ,L 0 - [ ' (3.22d)

m az m as tat jU
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The above exponential expansion is the only known way to break apart the Boltz-

mann equation. To complete the expansion the Poisson and Fokker - Planck 4erms

must be similarly broken down.

At this point it is appropriate to nondimensionalize the expansion of the Boltz-

mann equation. The following nondimensional quantities have been used.

Fj for 0:< is n (3.23a)--nit3/2

S= -- r, (3.23b)
al/2

Z =v,/z, (3.23c)
Ca

P-i mnR r (3.23d)

P0 (3.23e)
j = for 1S<i <n (3.23/)

mnRr

Where ni is a reference density, a and a' are the inverse square of the thermal

velocities of the colliding particles, a = 2 and a' = -. The quantities p-, through

P, represent the potential structure of the presheath. F is nondimensionalized

such that 1 = f-,. FdZ. Using these nondimensionalizations, the expansion of the

Boltzmann equations becomes

OFo , Fo {Fj (3.24a)
ar az at(L
OF1  OF OF0  r

AU: m-+ poZF1  .±~ [( A(3.24b)
OF2  OF2  F 1  O Fo0 F]}1(32

AU.,'2: M"'+ 2oZF2± sI2_so,--1-± 2 p2 - [OMr} (3.24.)

AU": ' ~ + nPZFn .p OFn [P OF 22 ] .r az 4
(nO).jF-1 OnpF0 = 1[OF}] (3.24d)



3.3.4 Expansion of the Poisson Equation

The Poisson equation,

- -= I 4q f,(v, AU) du - L. f(v, AU) du] (3.8)

is broken down using the same technique as the Bcltzmann equation. Since:

= . 2aU +p4 2
2 U2 + 9, 2aAU3Z+.+ (3.25)

(v, AU) dv = ffo(v) du + AU f l(v) du + U2 L 2 (v) du +. (3.26)

Using these expansions the Poisson equation can be broken down by order in AU.

1: 0 = 4irq2  fodu -d o f.o(w) d] (3.27a)
Ul

AU: #2 a, = 4rq2 [jOfil(u) dvu - f() dv] (3.27b)

AU 2 : 462 a2 = 4irq2 [J 1,(v) dV - f.2(V) dv] (3.27c)

AU" : n,2,,,, = 4xq2 fi,,(v) du- vfn(u) d] (3.27d)

The assumption of Boltzmann electrons is made to enable the numerical calcula-

tions to proceed with time steps on the order of an ion characteristic time. In the

asymptotic presheath the Boltzmann electron assumption becomes

no = noc-esAU+osAU$+ ' ''+e.AU 'Ij (3.28)

where n. is the electron density, T is the electron temperature, and no is the electron

density in the asymptotic presheath at AU - o. Expansion of (3.28) in terms of &U

yields

n, [no] + AU[_L no] +AU2 a2+IJ no]
[( " °°' 1 K- U. 2 "

~A?73I 03l + - I 1no +.. (3.29)'"'KT.+kT2 6 (kT.) 3 J
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With the assumption that AD -c X the Poisson equation reduces to equating electron

and ion densities in order of AU. The Poisson and Boltzmann electron equations are

nondimensionalized in the same manner as the Boltzmann equation. The nondi-

mensiona!ized Poisson equation (3.27a-d) is combined with the Boltzmann electron

equation (3.28) to become

L Fo dZ e[+"( ) (3.30a)

F1 dZ =i'1 +9I Ei') 01- LTTi (3.30b)

(T
FdZ .+..v I(PsL 00 (_ + '22 (a-)' (T.. 3

where q - - and may be specified as a function of time. This equation can be used

to solve for the potential structure at each time step. , is the ion temperature and

T. is the electron temperature.

3.3.5 Expansion of the Fokker - Planck Term

The Fokker - Planck term must also be expanded in order of AU but first must

be put into cylindrical coordinates. In addition, the assumption of axial symmetry

must be accounted for in the term. This can be accomplished by expanding each

term in the general Fokker - Planck term.

(LI 1 MV, 'Qa. (3.9)at, uj a w V 2ata a vi'

The first term can be rewritten:

M (.f(~) (3.31)

V2 RBRL(ROR+R~. + (3.32)
R aR (aR R2 a02 aZ2($32
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Axial symmetry eliminates all a dependence, eliminating the middle term. In addi-

tion, with the assumption of a Maxwellian radial velocity distribution the problem

has been reduced to one dimension. Thus,

a3g (3.33)

and the first term reduces to:

a (f. 
(3.34)

The second term in the Fokker - Planck equation,

1 a 2 a g
2 av v, av. ( av.

can be reduced directly to the one dimensional case.

1 a2( 2g) (3.35)

Therefore, the Fokker - Planck term in one dimensional cylindrical coordinates is:

if~±( Mf 1_ (3.36)\ _

rat " 2 :2 / z2 (fZ 2MaZ3)

In order to get a complete collision model the function g must also be converted to

the appropriate coordinate system.

g(,) f f (V) I v- d,' u'

This definition can be reduced for the one dimensional case.

g(z) - (17) Iz - 9 1 dI (3.37)

or, written another way

b"
g(. = lz+ f If , I df (3.38)

9(z 
f
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With this definition the Fokker - Planck term becomes:

a ,f 2 a2 V • -2 Q (Z+f)I df - I(fMJ_ Q( +' f f+J)) 3I .39)

For brevity let i denote a derivative with respect to z. Using this notation the Fokker

- Planck term becomes:

IjfIM-L ~ 5 (ff f"(z+ 4 If I d) ~(~L f"(--+f) I I die) (3.40)

The Fokker - Planck term is nondimensionalized using the same variables as the

Boltzmann equation.

( ; a m - (F1 2 _ a*r (Z + 0 I )l-l (01 Z + 1) _-1 rI dr) (3.4 1)
JF 1 Z 82 cF1  \ ( 2Ma

Let:

A(F) -I F'(Z + C) I f I ,f (3.42)

B(F) f : "'(Z + C) I cdr (3.43)

The Fokker - Planck term can be written in a compact form using these defined

functions.

(F 2-L (PF ) -L(FJI (3.44)
ar Z2 az ''

The Fokker - Planck term can be expanded by order in AU using the same technique

as the Boltzmazin equation.

[L r A ( + a (,B(o))]

+,&-AU (F A(Fo)) +-L(FB(Ao)) + 2 (FOA(Fo))+-(FB(F,))]

+Au [ Z (F-vaA(Fm) + -(F._.,(F,.)))]
MWO az(3.45)
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This expansion can be combined directly with the expansion of the Boltzmann

equation.

3.3.6 Solution Approach

To obtain a time dependent solution to the Boltzmann equation with the Fokker

- Planck collision term a numerical technique is necessary. The solution presented

has been limited to ion - ion collisions because these collisions represent the majority

of the collisional energy and momentum transfer within the presheath. The positive

signs in the Boltzmann equation must be applied for ion - ion collisions. The ratio

of particle mass to reduced mass, , must be equal to two for like particles. The

ratio of the inverse squares of the particle thermal velocities, -, must be one for

like particle collisions. The nondimensional Boltzmann equation reduces to the

following form.

B.a( ") (3.46)

a~i-, (2 (F.

-- iom-T-- + E( 2(Fj..A(m)) + i.(,.)

where the summations are taken to be zero if i -0. The functions A(Fm,) and B(Fm,)

can be written:

_M
B(F)- -f F"(Z+f) kI d (3.48)

The 'V" equations in the expansion are solved to obtain the time dependent

particle velocity distribution. The Poisson equation is employed at each time step

to obtain the potential structure. The ratio of the higher order equations with

respect to the first order equation eliminates the qe1~z "J*(.) term from the

Poisson equation. Using this technique each successive component of the potential
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structure can be determined from the previous components.

fF, dZ - (2T) (3.49a)
F0 dZ -P0 T.)

f L=FoPZ - LkT,) I 2 !T

fF2 dZ jO 2. i(T 2 Ai 3 2
~~~~jy~ }(3.49b)

fF0 dZ -,p T. 2 ~o T$_.Fo dz - T. \ ",) -o i o T. P"0- -. _\) 3 (3.49c)

Using these equations the particle velocity distribution and the potential structure

of the presheath are determined as a function of time.

Of interest in this study is the point at which there are no returning ions.

This is the presheath - sheath interface. This occurs when the net ion flux away'

from the wall is zero. To calculate this point in the presheath it is necessary to

obtain a value for the potential expansion parameter , u such that when the overall

particle distribution is reconstructed from the various terms in the expansion no

returning ions are present. Thus, at the critical point of no returning ions the

model determines the total particle velocity distribution, the potential structure,

and a value for the potential expansion parameter. From the potential structure and

the potential expansion parameter the presheath height at the point of no returning

ions can be determined (see figure 3.5).

("4
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CHAPTER IV

NUMERICAL 1 ECHNIQUE

4.1 Problem Approach

The solution of the Boltzmann equation, as written in equation 3.46, coupled

with the Poisson equation (3.49) is the goal of the numerical procedure.

The general approach is to solve the Boltzmann equation for the particle velocity

distribution using a partially implicit, partially explicit scheme. Each step in time

the Boltzmann equation is solved using some results from the previous time step.

In equation 3.46 the left hand side is solved implicitly while the right hand side is

solved explicitly.

. a2 +,_Z aF

BFa. az 8 (3.46)
+- tm + -L LF-A(.)+ LOF-Z(F.

The left hand side of this equation can be put in a matrix form.

[ T(r) } j [F(r+At)] (4.1)

In this form the matrix T(r) is an mx m matrix created from the left hand side of the

Boltzmann equation. The quantity m is the number of divisions in the velocity space

Z chosen for the numerical scheme. The matrix T(r) is computed from A(Fo(r)) and

B(Fo(r)). The values of these derived functions are taken from the solution to the

particle velocity distribution at the previous time step, T. Numerical derivatives are

used to represent the partial derivatives in the equation. This procedure produces

a diagonal matrix where all elements except those on an odd number of centered
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diagonals are zero. The number of diagonals reflects the order of accuracy in the

solution. Diagonal matrices of this form are easily and quickly inverted. The

Fi(r+Ar) matrix is an mx 1 matrix of unknowns that represents the particle velocity

distribution at the current time step. 'i' equations of this form can be written

corresponding to the number of terms in the expansion.

The right hand side of the Boltzmann equation can also be put in a matrix

form.

VI [ V; (J +-..+~ V,% ) + [ .()(4.2)

The scalar p values are unknowns and represent the nondimensional coefficients in

the asymptotic potential structure of the presheath.

The tn(r) matrices are m x 1 matrices which are comprised of the partial deriva-

tives of the velocity distribution at the previous time step, r. They represent the

first summation on the right hand side of the Boltzmann equation.

The d matrix is an m x 1 matrix comprised of the second summation on the right

hand side of the Boltzmann equation.

(2 F + I- (-.B(F))

All values of the distribution and the functions A(F,) and B(F,) are taken at the

previous time step, r.

Putting together equations 4.1 and 4.2 a matrix form of the Boltzmann equation

is created that can be solved for the particle velocity distribution.

_T(r) Fdr+Ar) - , (r)] + + [ wi(T)] + [,(r) (4.3)
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'' equations of this form can be written corresponding to the number of terms in

the asymptoic expansion being used.

These equations are quickly inverted to obtain the particle velocity distribution

at the current time step.

I[F dtr+ Ar)] i~i [I (T)I + '"+ jOR [ v 'i" r] + [D t(r)] (4.4)

Where the V. and D matrices represent the m x I solution matrix to the inversion

of the T(r) matrix with the corresponding v. or d matrix.

Tha particle velocity dLtribution is obtained from this equation using the SO.

values from the previous time step.

Equation 3.49 is employed to obtain the V. values at the current time step.

ff:- F, dZ pl i') /,.A
fi= d o4= , ... )

fI_ Fo dZ -o \T. V .9a)
~ (2T, 1 ('1 2 (!T.9b

ff_ F2 dZ p2 i.o+-  -/

The new distributions are integrated numerically and the 1 through scalars

are determined consecutively. The value of is input and is a nondimensional

representation of the coeffcient p in the potential expansion parameter, AU.

For each time step, the overall particle velocity distribution can be determined

at any location from the original expansion once it has been nondimensionalized.

F(Z, ArP) = Fo(Z) + A2V'(Z) + AUUF(Z) +... (4.5)

since,

&U" = =,,o, (4.6)

(o7 .
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Where the * quantities are nondimensional. z has been nondimensionalized with

respect to an ion mean free path.

2

Ze = Z

ntr

The potential structure of the presheath is detemined from the nondimensional

form of the original expansion of potential.

U" = U; + 91&U" + AU "2 +-.- (4.7)

Using this procedure the time dependent evolution of the presheath is obtained.

The point of no returning ions occurs where the integral of the left half plane

of the total particle velocity distribution is zero.

0'
0=] F(Z)dZ (4.8)

This equation can be rewritten using the expansion of the particle distribution.

p0 0 p0

0-] Fo(Z)dZ + AU] F1(Z)dZ + AU °2  F2 (Z)dZ +... (4.9)

Equation 4.9 can be solved for ,U" Since the particle distributions are now known

as a function of time and velocity. The entire solution at the point of no returning

ions. is known with this last piece of information.

4.2 Numerical Integration, Differentiation, and Matrix Inversion

In order to obtain a solution to the potential structure and particle distribution

in the presheath it is necessary to develope the applicable mathematical tools. The

primary techniques needed are integration, differentiation, and matrix inversion.

(p•
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4.2.1 Numerical Integration

Throughout the solution integration is computed using a Simpson's I rule

technique[121.

f (z)dz = (f + 4f2 + 2f3 + 4f4 + 2f, + + 2fn-I + 4fn + fn+,) (4.10)

Where h is the spacing between the points and f, through fl. represent the function

values at each point. This procedure has a global error of O(h 4 ). If the step size is

chosen appropriately this procedure is very accurate.

4.2.2 Numerical Differentiation

The technique for determining numerical differentiation is a second order ac-

curate scheme. This reduces the number of computations while maintaining high

accuracy. Second order accurate numerical differentiation requires that only three

points be known. Thus, the 'T(r)' matrix contains only three diagonals. If third

order accuracy was used the 'T(r)' matrix would require five diagonals to represent

the five points needed for the differentiation. In addition, to maintain uniformity a

central difference technique is desirable on as many points as possible. The greater

the number of points needed for each derivative the more points that require forward

or backward difference techniques ( rather than the central difference technique).

Below is a list of the techniques used to obtain derivativesl 2l.

Central Difference

61_F =F(r + 1) - F(z - 1) .1o
8z 2h

a 2 F F(: + 1) - 2F(z) + F(z - 1) (4.llb)
az 2  h2

a3 F F(z + 2) - 2F(z + 1) + 2F(z - 1) - F(z -2) (4.11c)
aX3 2h3



26

Forward Difference

_F -F(z + 2) + 4F(z + 1) - 3F(z)
8z 

2h.

a2 F F(z + 2) - 2F(z + 1) + F(z) (4.12b)

a3F F(z + 3) - 3F(z + 2) + 3F(z + 1) - F(z) (412)
a Z- h3 (41c

Backward Difference

BF _ 3F(z) - 4F(z - 1) + 3F(z - 2) (4.13a)
8z 2h

82F F(z) - 2F(z - 1) + F(z - 2) (4.13b)

a3 F F(z) - 3F(z - 1) + 3F(z - 2) - F(z - 3) (4.13)

Where h is the grid spacing. The derivatives are being taken about point z.

It is worth noting that the third derivative equations require up to five points.

There is no second order accurate numerical third derivative representation. These

equations are third order accurate. This does not effect the 'T(r)' matrix in that

it contains no third derivatives. The solution procedure requires third derivatives

only in the determination of the function B(F(r)).

These equations are used throughout the solution for derivatives with respect

to vel ,city, Z, and time, r.

4.2.3 Matrix Inversion

In order to obtain a solution a procedure for inverting a diagonal matrix is

necessary. The procedure used will invert any centered diagonal matrix. For the

second order accurate case the matrix in question is tridiagonal. The procedure

uses Guassian elimination on all terms below the center diagonal and then through

back substitution determines the solution vector. This technique can quickly invert

a 200 x 200 tridiagonal matrix.

70
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4.3 Obtaining a Solution

As in any numerical model certain restraints and conditions must be met to

obtain an accurate solution. This model requires some form of input distribution

function and in order to obtain higher order terms must also have a perturbation

applied to the potential structure. In addition, certain numerical techniques have

been used to remove instabilities in the model.

4.3.1 Initial Distribution

To model the presheath region an initial particle velocity distribution that con-

forms to a Maxwellian profile has been used. This profile represents the distribution

that naturally occurs in the neutral plasma region. The idea is that the time de-

pendent evolution of the distribution will change from a Maxwellian at time zero to

a shifted new form as the presheath is entered. The Maxwellian profile is initially

given to the zero order term having set the initial conditions of all higher order

terms to zero.

If the potential structure of the presheath is not perturbed in some manner then

the model represents the neutral plasma region and the particle velocity distribution

remains MaxweUian ( as it should ). If, however, a small perturbation in the

potential stucture is added (ie. a nonzero 41, a2-) then the model readjusts to

describe the presheath region. In this manner the model is used to give the time

dependent evolution of the presheath.

4.3.2 Instability Damping

By the nature of the implicit - explicit technique being employed certain numer-

ical problems are expected to appear. This model is no exception. Two tec],niques

have been used to remove these instabilities.
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The most important thing to do to avoid numerical problems in a scheme of this

nature is to ensure that as much as possible of the solution is computed implicitly.

In addition, once some new data has been calculated it should be applied to any

new calculations immediately.

In this model each term in the expansion of the particle distribution function

uses the new data already determined in calculating all of the lower order terms.

Once F is determined that information is used in calculating Fl. This idea is

repeated for the higher order terms.

A second method applieI to the model to eliminate oscilliatory instabilities that

start on a very small scale and grow is the application of a very weak averaging

scheme to the particle distribution functions. Each point in the distribution is

weakly averaged with the points on either side.

F(Z) = .02SF(Z + 1) + F(Z) + 0.025F(Z - 1) (4.14)
1.05

This technique, although necessary, has the negative effect of falsely increasing the

energy in the system by spreading the distribution slightly (see figure 5.1). The

change is very small and can be considered insignificant with respect to the overall

solution.

4.4 Program Structure

The entire program has been written in FORTRAN and can be run on either

an IBM PC AT or on the CYBER mainframe. The code has been written in a seg-

mented manner that easily allows one section to be altered without having to alter

other sections. The overall structure of the program consists of three initialization

programs, three input data files, the main program, and three output data files.

The main program contains a driver and seventeen subroutines. Several of the sub-

. 2
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routines perform operations that are used throughout the main code. Figure 4.1 is a

diagram of the structure of the program. The flexibility of the code is derived from

the generalized subroutine structure and the ability to enter a variety of input vari-

ables. The driver keeps track of time and maintains the overall operating structure

of the solution while the subrutines perform the necessary manipulations. Below

is a list of the function of each program, data file and subroutine.

AVE - Subroutine to smooth distributions by averaging.

CONSERV - Subroutine to determine conservation of energy, momentum, and

particles.

CONSOUT - Conservation output data file.

CRF - Particle distribution initialization program.

CRPHI - Potential structure initialization program.

DENSITY - Subroutine to solve for a new presheath structure.

FDATA - Initial particle distribution data file.

FD1 - Subroutine to find first derivatives.

FD2 - Subroutine to find second derivatives.

FD3 - Subroutine to find third derivatives.

FINDA - Subroutine to determine 'A' function.

FINDB - Subroutine to determine 'B' function.

FPINIT - Primary initialization program.

FPOUT - Output particle distribution data file.

FPSHETH - Main program driver.

GETAB - Subroutine to make A and B function vectors.

INITDAT - Initialization data file.

MAKED - Subroutine to make d matrix.

t1
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MAKEF - Subroutine to read initial particle distribution.

MAKEPHI - Subroutine to read initial potential structure.

MAKET - Subroutine to make T matrix.

MAKEV - Subroutine to make v matrix.

MODIAG - Subroutine to invert diagonal matices.

PHIDAT - Initial potential structure data file.

PHIl)OUT - Output potential structure data file.

SIMPS - Subroutine to perform Simpson's rule integration.

TOT - Subroutine to obtain total distribution at point of no returning ions.
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CHAPTER V

RESULTS

The ratio of ion temperature to electron temperature, ., has been set to one

half throughout these results. There is little effect on the particle distribution or

potential structure if the temperature ratio is changed to other values. The electron

temperature is expected to be higher than the ion temperature in the presheath since

electrons absorb energy from electric and magnetic fields faster than ions and other

large particles.

Through repeated test runs of the model it was found that fifty-one points in

velocity space were enough to provide high accuracy and produce good results.

The range of points in velocity space has been truncated to *5 nondimensional

units. The results show that at ±s the distribution is near zero, substantiating the

truncation.

A time step of 0.2 nondimensional times was found to keep the solution accurate.

Three nondimensional units in time were sufficient to produce stable results.

It was found that the magnitude of the higher order terms in the particle velocity

distribution drop off very rapidly. Thus, the higher order terms have very little

impact on the shape of the potential or of the particle distribution.

To understand the effects of a quiescent plasma interacting with a surface the

potential gradient in the neutral plasma has been set to zero. To accomplish this

the * term in the expansion of potential has been set to zero.

U = Uo + aIAU + a2 IU2 +... (3.13)

qs !-
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where

Uo = az and Au=Co (3.14)

A stable solution exists only for a specific critical value of the exponential coefi-

cient, p, which represents the scale of the presheath. The quantitiy f is nondimen-

sionalized as Wo - AT, where njr is an ion mean free path. It is expected, as shown

in section 3.2, that the critical value should be on the order of a mean free path. It

was found that = 0.4 produces the most nearly stable results. The distributions

become unstable for values greater or less than 0.4. The small remaining instability

a -= 0.4 can be attributed to the inexact nature of the numerical solution.

The results presented here are first order and produce a complete picture of the

structure of the presheath because the higher order terms collective contribution

is more than an order of magnitude smaller. Figures 5.1 and 5.2 are plots of the

zeroth and first order expansions of the particle distribution in velocity space. The

zero order term remains Maxwellian because the potential gradient in the neutral

plasma is zero. The first order term of the distribution obtains a profile that has

roughly the shape ( but not magnitude) of the negative first derivative of the zeroth

order solution. The potential expansion parameter at the point of no returning ions

is determined for each time step. Using the particle distribution functions and the

known potential expansion parameter together produce the overall particle velocity

distribution at the point of no returning ions, the presheath - sheath interface.

Figure 5.3 shows this distribution.

The positive shift in the total distribution is as expected for the presheath. The

ions are being pulled into the wall. The particle distribution for velocities away from

the wall is zero for the case of no returning ions. The point of no returning ions

exists where the particle distribution for velocities away from the wall integrates
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to zero. Figure 5.3 shows that the ion distribution becomes negative for velocities

away from the wall. A negative particle distribution cannot exist physically. The

addition of higher order terms does not correct the problem because the expansion

drops off so quickly that any higher order terms have no impact on the shape of

the distribution. The problem is fundamental to the type of collision term being

applied in the model. The Fokker - Planck term only models the limit of smal!

angle collisions. However, large angle collisions become important in the presheath.

The first term of the nondimensionalized potential structure, pl, has been ini-

tially perturbed to 1.0 x 10-4 to obtain the results presented in figures 5.1, 5.2 and

5.3. Perturbing the potential structure provides the model with the nonequilibrium

condition necessary to initiate the time dependent development of the presheath.

The strength of the initial perturbation is not significa.nt to obtaining an accurate

particle distrilution and potential structure of the presheath. Figures 5.4, 5.5, and

5.6 are the result of an initial perturbation of 1.0 x 10-3 and figures 5.7, 5.8 and 5.9

are the result of an initial perturbation of 1.0 x 10-5. Comparing these results show

that the magnitude of the initial perturbation only affects the scale of the first order

term and has no effect on the overall particle distribution in velocity space.

Figure 5.10 is a plot of the position of the point of no returning ions, the

presheath - sheath interface, as a function of time for the three solutions. Since no

source of ions exists in the model the relative position of the plasma with respect

to the surface changes as a function of time. The wall is moving into the plasma,

or the plasma is moving into the wall, at the rate at which the wall is absorbing

ions. The three solutions have different magnitudes but follow the same profile.

The strength of the perturbation controls the relative position of the zero point.

Figure 5.11 is a plot of the potential structur, of the presheath obtained from

77
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the three solutions as a function of position. The data for the potential structure has

been taken from the solution at a nondimensional time of two. Note that the affect

of the different initial perturbation values is to cause a shift in the relative position

of the potential but has no effect on the shape of the potential or on the strength of

the potential at the point of no returning ions. Changing the perturbation strength

alters the location of the zero point but not its shape. The stronger the perturbation

the further the zero point is moved from the surface. The horizontal line in the plot

depicts the presheath height at the point of no returning ions. The vertical lines

show the position of the point of no . - rngn ions.

A time dependent plot of the presheath height at the point of no returning ions

is presented in figure 5.12. This plot shows that the time evolution of the sheath-

height approaches smoothly to a nearly constant value of 0.16. All three solutions

fall on the same curve. This shows that the strength of the perturbation does no.

affect the results obtained.
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CHAPTER VI

CONCLUSIONS

The solution obtained is an accurate representation of the time dependent de-

velopment of the Fokker - Planck presheath. The model produces a precise potential

structure, however, the distribution of returning ions breaks down in the presheath.

An oscillation developes in the negative tail of the distribution, as seen in figures

5.3, 5.6, and 5.9. This oscillation cannot be removed by including additional terms

to the expansion. In addition, the sheath height of 0.16 determined at the point of

no returning ions is roughly an order of magnitude smaller than expected. Both of

these conditions lead to the conclusion that the Fokker - Planck collision term does

not represent the type of collisions that remove the returning ions in the presheath.

This breakdown is do to the failure of the Fokker - Planck collision term to model

the large angle collisions that take place within the presheath. The Fokker - Planck

term is effective at modeling the collisions present in the center of the plasma but

breaks down in the presheath. The primary mechanism behind clearing out the

returning ions from within the presheath is not particle diffusion as represented by

small angle defiections but rather the large velocity changes caused by large angle

colision. Since the Fokker - Planck term models particle collisions that represent

the limit of small angle collisions it is inadequate at describing the mechanisms

controlling the ion velocity distribution moving away from the wall. The solutions

obtained using a Maxwellian distribution by Bissell and Johnson'l and Emmert et

al.I1I and those obtained using a charge exchange collision model by Riemann[61 and

Main[TI effectively include the large angle collisions since they model the collisions

- -79
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by instantaneous changes in particle velocity and position. These collision models

do not represent the Coulomb collisions taking place in a fully ionized plasma. They

do not represent the collision processes but only approximate the collisional effects.

This Fokker - Planck presheath model produces a self-consistent and precise

potential structure. The particle velocity distribution in the presheath has the

correct acceleration of ions toward the wall but because the Fokker - Planck collision

term only models the limit of small angle collisions it is unable to clear the particle

distribution of returning ions. The effect of not modeling the large angle collisions

is that the particle distribution for returning ions is accurate only in the initial

section of the presheath where the collisional processes are dominated by particle

diffusion. The collisional processes become dominated by the effects of the large-

angle collisions as the interface between the presheath and the Debye sheath is

approached. Only by including a collision term which accounts for these large

angle collisions can a presheath model produce a particle velocity distribution that

accurately models the condition of no returning ions. This study has found that a

presheath model which describes the Coulomb collisions occurring in a fully ionized

plasma must account for both the small angle collisions and the large angle collisions.
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APPENDIX: PROGRAM LISTING

* THIS PROGRAM WAS WRITTEN BY JEFFREY P. DANSEREAU

* THIS VERSION WAS LAST UPDATED ON 7/17/87
*.a.*.************** ***ae***l* ********..*a****e******.ol*******

C

C THIS PROGRAM IS A TIME DEPENDENT MODEL OF THE SHEATH -
C PRESHEATH OF A PLASMA. IT USES A FOKKER-PLANCK COLLISION
C TERM WITH ONLY COULOMB COLLISIONS. BELOW IS A LIST OF
C THE VARIABLES AND THEIR MEANING
C
C T - DIAGONAL REPRESENTATION OF T MATRDI.IST IS DIAGONALS.
C 2ND IS M VEL POS.
C V . 3-D MATRIX OF V COMPONENTS. 1ST POS. IS F'S, 2ND IS
C N PHI POS., 3RD IS M VEL. POS.
C VV - 3-D MATRIX OF V VALUES AFTER INVERSION WITH T MATRIX.
C POS. ARE SAME AS V MATRIX WITH ADDITIONAL ROW FOR BC'S.
C D - 2-D MATRIX OF D VALUES. 1ST POS. IS F'S, 2ND IS M VEL POS.
C DD - 2-D MATRIX OF D VALUES AFTER INVERSION WITH T MATRIX
C PHI- VECTOR OF PHI VALUES
C F - 2-D MATRIX OF DENSITY FUNCTIONS, 1ST POS. IS THE n F'S
C THAT ARE BEING USED. (a-N-i). F(I,X)- FO ECT... THE
C 2ND POS IS THE M VEL POS.
C TSTEP. VALUE OF DELTA T AS TIME IS STEPPED THROUGH
C VSTEP- VALUE OF DELTA V AS VEL. SPACE IS STEPPED THROUGH
C RTIME - CURRENT VALUE OF NON-DIM. TIME
C ETA - CURRENT VEL.
C NETA - ETA PARAMETER IN POISSON EQN
C TOTE - RATIO OF T TO T,(T OVER Te)
C SM - SMALL M(m) IN F-P EQN
C BM -BIG M(M) IN F-P EQN
C AA -a IN F-P EQN
C AP a'IN F-P EQN
C M - NUMBER OF DIV. IN VEL. SPACE
C N - NUMBER OF PHI VALUES
C ND - NUMBER OF DIAGONALS IN T MATRIX

-9



56

C TIME - INTEGER VALUE IN TIME LOOP

C TEND - RTIME TO FINISH SIMULATION
C L -INTEGER TIME VALUE TO END SIMULATION
C FLAG1 - FLAG TO PRINT OR NOT PRINT MATRICES (99 TO PRINT)
C fLAG2- FLAG TO PRINT OR NOT PRINT INTERMEDIATE MATRICES
C (99 TO PRINT)
C TRBLE - FLAG TO PRINT TROUBLE STATEMENT IF MATRIX IS NOT
C INVERTABLE
C B,SOLN - INTERMEDIATE VALUES OF VARIOUS FUNCTIONS
C XY,Z - INTEGER COUNTERS
C
C THIS PROGRAM STEPS THROUGH TIME SOLVING THE BOLTZMANN EQN FOR
C VALUES OF THE EXPANDED DENSITY FUNCTION
C

REAL T(6,8,202),V(6,6,202) ,B(202),SOLN(202),TEND
REAL VV(6,6,202) ,D (6,202) ,DD(8,202) ,PHI(6) .L
REAL F(6,202),TSTEPRTIME,SM,BM,AA,APVSTEPETA,NETA,TOTE
REAL FTOTAL(202),SO,DU,DUPHIl
INTEGER X,Y,Z,M,N,ND,TIME,TRBLE,FLAG1,FLAG2,FLAG3,PPSTEP,SKIP

C
C READ IN PARAMETERS AND PRINT THEM
C

OPEN(UNIT=2,FILE--'INITDAT.DAT',STATUS='OLD')
READ(2,705) M,NETATOTE,AA,APSM,FLAG3,SKIPSO
READ(2,707) BM,VSTEPN,ND,TEND,TSTEPFLAGI,FLAG2
CLOSE(UNIT=2)

705 FORMAT(14,lXFB.4, 1X,F6.4,lXF6.4,lXF6.4,lXF6.4,lX,13, iX,

+ I3,lXF9.4,/)
707 FORMAT(lXF6.4,lX,F6.4,I.X,14, 1X,14,1ZF8.5,1XF7.5,1X,I3, 1X,I3)

OPEN(UNIT=1,FILE='PHI.OUT',STATUS-'UNI(NOWN')
OPEN(UNIT-3,FILE-'FPSHETH.OUT,STATUS-'UNKNOWN')
WIRITE(3,717)

,e+seae

717 FORMAT(A,A)
WRITE(3,711) 'FOKKER - PLANCK SIMULATION OUTPUT'

+
WRITE(3,710) 'INPUT PARAMETERS'
WRITE(3,715) 'NUMBER OF VEL. STEPS - MIXM
WRITE(3,715) 'NUMBER OF PHI VALUES.- N',N

- /00
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WRITE(3,715) 'NUMBER OF DIAGONALS IN T MATRIX - ND',ND

WRITE(3,720) 'VALUE OF ETA IN POISSON EQN - NETA',NETA
WRITE(3,720) 'VALUE OF T OVER TE - TOTE',TOTE
WRITE(3,720) 'SIZE OF EACH VEL. STEP - VSTEP',VSTEP

WRITE(3,720) 'SIZE OF EACH TIME STEP - TSTEP',TSTEP
WRITE(3,720) 'VALUE OF ENDING TIME FOR SIMULATION',TEND

WRITE(3,720) 'VALUE OF A PARAMETER IN F-P EQN - AA',AA
WRITE(3,720) 'VALUE OF A PRIME PARAMETER IN F-P EQN - AP',AP

WRITE(3,720) 'VALUE OF SMALL M IN F-P EQN - SM',SM
WRITE(3,720) 'VALUE OF BIG M IN F-P EQN - BM',BM

WRITE(3,716) 'FLAG TO PRINT PRIMARY MATRICES(99 TO PRINT)',

+ '- FLAG1',FLAG1
WRITE(3,716) 'FLAG MAKE FDATA AND PHIDAT NEW FINAL VALUES',
+ '(99 = YES) - FLAG3',FLAG3
WRITE(3,715) 'TIME SKIP FOR PRINT OF F FILE - SKIP',SKIP

716 FORMAT(5X,A,A,2X,13)
WRITE(3,7o)

710 FORMAT(1SXA,//)
711 FORMAT(SX,A,/)
713 FORMAT(SX,A,2X,13)
720 FORMAT(SX,A,2X,F9.5)

C
C MAKE NON TIME DEPENDENT QUANTITIES AND INITIAL APPROXIMATIONS
C TO F'S, PHI'S, AN THE BC
C

DU=0.0
DUPHI1=0.0
CALL MAKEF(M,F)

CALL MAKEPHI(N,RTIME,PHI)

CALL TOT(F,FTOTAL,PHIN,MVSTEP,DU,DUPHI1)

TT=0.0

CALL CONSERV(F,VSTEPTT,M)

C
C *~eeeeeeeae.Osg.O...e...Sog....

C
C START MAIN TIME LOOP

C

C

C

C

,ol



C COMPUTE END LOOP TIME L
C

L=TEND/TSTEP
PSTEP=0

C
DO 40 TIME-i,INT(L)+i

C PRINT RESULTS OF CURRENT TIME STEP
C

PSTEP.PSTEP+ 1
IF (TIME.LE.3) GOTO 1000
IF (PSTEP.GE.SICIP) THEN

PSTEP=0
GOTO 1000

EN DIF
GOTO 1001

1000 WRITE(3,35o) 'TIME = ',IRYIME,'TSTEP - ',TIME-i

DO 210 Z=1,N
WRITE(3,250) 'PHI(',Z-2,') - ',PHI(Z)

210 CONTINUE
WRITE(3,351) 'DU = ',DU,'DU'PHI(1) - ',DUPHI1
WRITE(3,711) '

WRITE(3,275) 'M','ETA','Fo','F1','F2','F3','FTOTAL'
ETA-5.0
DO 220 X=1,M

WRITE(3,300) XETA,F(1,X),F(2,X),F(3,X),FTOTAL(X)

ETA-ETA+VSTEP
220 CONTINUE
1001 WRITE(3,710)

WRITE(1,813) TIME,RTIME,PHI(1) ,PHI(2) ,?HI(3) ,DU,DUPHIl
813 FORMAT(I3,1XF7.4, 1X,E13.8,1X,E13.8,1XE13.8,1X,E13.6,

+ IX,E13.6)
IF (TIMLGT.INT(L)) GOTO 40
WRITE( ,948) 'CURRENTLY IN TIME STEP',TIME,'OF',INT(L)

946 FORMAT(SX,A,14,2XA,14)
C
C MAKE TIME DEPENDENT QUANTITIES T MATRIX. V MATRIX, D MATRIX
C

DO 445 JJ-1,2
CALL MAKET(ND,M,F,VSTEPSM,BM,AA,APTSTEP,SO,PHI,N,TL)
CALL MAKEV(N,M,F,VSTEP~V)
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CALL MAKED(M,F,VSTEPTSTEPSM,BM,AA,APN,PHI,D)

C

C INVERT T MATRIX WITH V VECTORS, MAKING VV MATRIX

C

DO 50 X-1,N-1

DO 60 Y=3,N

DO 70 Z=1,M

B(Z)=V(X,Y,Z)

70 CONTINUE

CALL MODIAG(M,ND,T,BSOLN,TRBLE,X)

IF (TRBLE.EQ.999) THEN
WRITE(3,') 'MATRIX HAS NO SOLUTION'

TRBLE=O
ENDIF

DO 80 Z=1,M

VV(X,Y,Z)=SOLN(Z)

80 CONTINUE
60 CONTINUE
50 CONTINUE
C
C INVERT T MATRIX WITH D VECTORS, MAKING DD MATRIX

C
DO 90 X=1,N-I

DO 100 Y=I,M~B(Y)--D(X,Y)

100 CONTINUE
CALL MODIAG(M,ND,T,B,SOLN,TRBLE,X)

IF (TRBLE.EQ.999) THEN
WRITE(,') 'MATRIX HAS NO SOLUTION'

TRBLE=o

ENDIF

DO 110 Y=I,M

DD(X,Y)=SOLN(Y)

110 CONTINUE

90 CONTINUE
C
C GET NEW F VALUES FROM NEW PHI VALUES

C

DO 160 X=I,N-1

IF ((JJ.EQ.1).AND.(X.EQ.2)) GOTO 160

/o3
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IF ((JJ.EQ.2).AND.(XEQ.1)) GOTO 180
DO 185 Z-1,M

F(X,Z)-0.0
185 CONTINUE

DO 170 Y=3,N
DO 180 Z=1,M

F(X,Z)=F(X,Z) +PHI(Y)*VV(X,Y,z)
180 CONTINUE
170 CONTINUE

DO 190 Z=1,M
F(X,Z)=F(X,Z)+DD (X,Z)

190 CONTINUE
160 CONTINUE

CALL AVE(F,M,N,JJ)
C
445 CONTINUE
C
C GET NEW PHI VALUES
C

CALL DENSITY(NM,PHI,F,TOTEVSTEP)
C
C MAKE TOTAL DENSITY
C

CALL TOT(FPTOTAL,PHIN,M,VSTEPDU,DUPHIl)
C

TT-RTIME+TSTEP
CALL CONSERV(FVSTEP,TT,M)

C
C INCREASE REAL TIME TO NEXT POSITION
C

RTLME=RTIME+TSTEP
C
C CONTUEM TIME LOOP
C
40 CONTINUE
C ... s**O***e***ees****.

C END TIME LOOP

c



61

C
C FORMAT STATEMENTS FOR PRINTS
C
250 FORMAT(5X,A,I4,A,1X,E13.6)
275 FORMAT(2XA,2XA,gX,A,12X,A,I2X,A,12X,A,10X,A)
300 FORMAT(13,1XF5.2,1XE13.8,1XYEl3.6, 1X,E13.6, 1- E13.6, 1X,E12.5)
350 FORMAT(5X 1A,F7.4,10XA,15,/)
351 FORMAfI(5X,A,E13.6,5X,A,E13.6)

CLOSE(U'NIT=3)
IF (FLAG3.EQ.99) THEN

OPEN(UNIT=4,FILE='FDATA.DAT',STATUS='UNKNOWN')
DO 265 X-1,M

WRITE(4,266) F(1,X) ,F(2,X) ,F(3,X) ,F(4,X)

268 FORMAT(E13.6,1X,E13.6,1XE13.6,lX,E13.6)
265 CONTINUE

CLOSE(UNIT=1)
OPEN(UNrT=8,FILE=,'PHDAT.DAT',STATUS-'UNKNOWN')
DO 267 X-1,N

WRITE(8,268) RTIME
WRITE(8,268) PHI(X)

268 FORMAT(E13.6)
267 CCNTINUE

ENDIF
STOP
END

REAL F(6,202),ETA,VSTEPNETA,TOTE,B,P1,C
INTEGER XMZ
OPEN(UNIT=3,FILE='FDATA.DAT',STATUS='UNKNOWN')
ETA-.O
PRINT-,'INPUT M,VSTEP'
READ(*,*) M,VSTEP
N-M.(M-1)/2
DO 10 X-1,N

F(2,X)=0.0
F(3,X)=0.0

F(4,X)=0.0
ETA=ETA+VSTEP
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10 CONTINUE
z-1
DO 30 X=MN+ 1,-I.

DO 40 Y=1,4

F(1,X)=F(1,Z)
40 CONTINUE

z-z+1
30 CONTINUE

DO 20 X=1,M

WRITE(3,100) F(1,X),F(2,X),F(3,X),F(4,X)

100 FORMAT (E13.6, 1X,E13.6, 1X,E13.6, IX,E13.6)

20 CONTINUE
STOP
END

REAL PHI(6),RTIME

INTEGER NX

N-5
RTIME=0.0

WRITE(,) 'INPUT PHI(.1)'

READ(',200) PHI(l)

WRITE(,) 'INPUT PHI(O)'

READ(s,200) PHI(2)

200 FORMAT(F1O.5)
WRITE(,') 'INPUT PHI(l)'

READ( ,200) PHI(3)

DO 10 X=4,N

PKI(X)=0.0

10 CONTINUE
OPEN(UNIT=9,FILE='PHIDAT.DAT',STATtIS-'UNKNOWN')
WRITE(9,120) RTIME

DO 20 X-1,N
WRITE(9,120) PHI(X)

120 FORMAT(E13.6)

20 CONTINUE
RETURN
END
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SUBROUTINE CONSERV(F,VSTEPT,M)
REAL F(6,202),FO(202),VSTEPZF(202),Z2F(202),ENER,MOM,DEN,T,ETA
INTEGER X,M

ETA-5.0
DO 10 X=1,M

FO(X)-F(I,X)
ZF(X)-F(1,X)'ETA
Z2F(X)-ZF(X)*ETA
ETA-ETA+VSTEP

10 CONTINUE
CALL SIMPS(FO,M,VSTEPDE,-)
CALL SIMPS(ZF,M,VSTEPMOM)
CALL SIMPS(Z2F,M,VSTEP,ENER)
OPEN(UNIT=9,FILE-'CONSERV.OUT,STATUS='UNKNOWN')
WRITE(9,100) T,DEN,MOM,ENER

100 FORMAT(2X,FB.5,1X,E13.8,lX,E13.8,lX,El3.e)
RETURN
END

SUBROUTINE DENSITY(N,M,PHI,F,TOTE,VSTEP)
REAL F(6,202) ,PHI(6) ,TOTE,VSTEP,G (202) ,R(4) ,NO (6)

INTEGER M,N,X,Y

DO 10 X-1,N.1
DO 20 Y=1,M

G(YJ=F(X,Y)

20 CONTINUE
CALL Sfl4PS(G,M,VSTEPNO(X))

10 CONTINUE
R(l)-NO(2)/NO(l)

R(2)-NO(3)/NO( 1)
R(3)mNO(4)/NO(l)

PHI(3)-.PHI(2)*R(1)/(2.O*TOTE)

+I /(2.O-TOTE)

+ -(((2.O TTE13) ((PHI(3)/PHiI(2))**3)/o.O)-R(3))/(2.o*TOTE)
RETURN
END

- ;0)7 -
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SUBROUTINE MAKEF(M,F)
REAL F(6,202)

INTEGER XM
OPEN(UNIT=8,FIL = 'FDATA.DAT',STATUS= 'UNKNOWN')

DO 10 X=1,M
READ(8,100) F( 1,X),F(2,X) ,F(3,X),F(4,X)

100 FORMAT(El3.6,lX,E13.6,1X,E13.6,lX,E13.6)
10 CONTINUE

RETURN
END

SUBROUTINE MAKEPHI(N,RTIME,PHI)
REAL PHI(6),RTIME

INTEGER N,X
OPEN(UNIT=9,FILE='PHIDAT.DAT',STATUS='UNKNOWN')
READ(9,120) RTIME
DO 20 X=1,N

READ(9,120) PHI(X)
120 FORMAT(E13.6)
20 CONTINUE

RETURN
END

SUBROUTINE MAKEV(N,M,F,VSTEP,V)
REAL F(6,202) ,V(6,6,202), VSTEPFD 1(6), ,Z, ETA
INTEGER N,MX,Y,RS
ETA=,-5.0
DO 10 X-1,M

CALL FD1(F,N,MX,VSTEP,FD1)
IF ((X.EQ.1).OR.(X.EQ.M)) THEN

DO 15 Y=1,N-1
DO 17 R=3,N

V(Y,R,X) =0.0

17 CONTINUE
1s CONTINUE

ELSE
DO 20 Y=1,N-1



z-1.0
s-1
DO 30 R=3,N

IF (S.GT.(Y.1)) THEN
V(Y,R,X)=0.o

ELSE
V(Y,R,X)-ZFD 1(Y.R+2)

ENDIF
5=5+1
Z=Z+ 1.0

30 CONTINUE
20 CONTINUE

ENDIF
ETA=ETA+VSTEP

10 CONTINUE
RETURN
END

SUBROUTINE MAKED(M,F,VSTEPTSTEPSM,BM,AA,APN,P{ID)
REAL VSTEPTSTEPSM,BM,AA,APF(8,202),D(,202) ,A(6,202) ,PHI(6)
REAL FD 1(6),FD2(6) ,AH(202) ,BH(202) ,B(6,202)
REAL ETA,GDl,GD2
INTEGER N,MAXY,Z
DO 10 X-1,N-1

CALL GETAB(F,VSTEP,M,SMBM,AA,APAH,BH,X)
DO 15 Y=1,M

A(X,Y)=AH(Y)
B(X,Y)=BH(Y)

15 CONTINUE
10 CONTINUE

DO 17 Y-1,N-1

D(Y,M)=0.0
D(Y,1)'mo.0

17 CONTINUE
ETAm-5.C+VSTEP
DO 20 X-2.M.1

A-X~0.0

LVO se Z=i,Y
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IF (Z.LE.Y.i) THEN
GD2=(A(Z+ 1,X+ 1) F(Y-Z,X+ 1)-2.0-

+ A(Z+1,X)'F(Y-Z,X)+A(Z+1,X.1)eF(Y.Z,X-1))/(VSTEPee2)

+ lX-1) F(Y-Z,X.1))/(2.OWVSTEP)
D(Y,X)=D(Y,X)+GD2+GD1

ENDIF
40 CONTINUE

D(Y,X)=D(Y,X)+F(Y,X)/TSTEP
30 CONTINUE

ETA=ETA+VSTEP
20 CONTINUE

RETURN
END

SUBROUTINE FD1(F,N,M,X,VSTEPFD1)
REAL F(6,202),FD1(6) ,VSTEP
INTEGER Y,X,N,M
DO 10 Y-1,N-1

IF (XLE.2) THEN
FDI(Yr(-F(Y,X+2)+4.oF(Y,X+)soe0F(YX) ) (2.OWVSTEP)

ELSE IF (XGE.M-1) THEN
FDI(Y)=(3.0aF(Y,X).4.0*F(Y,X. l)+F(Y,X-2))/(2.0-VSTEP)

ELSE
FD1(Y)=(F(Y,X+ 1).F(Y,X. I))/(2.oOVSTEP)

ENDI?
10 CONTINUE

RETURN
END

SUBROUTINE MAKET(ND, MIFVSTEPISM,BMAA,APTSTEPSOPHINT)
REAL VSTEPTSTEP~SM, BM,AA,AP.F(6,202),T(6,8,202) ,A(202)
REAL ETA,B(202),PHI(6),P
INTEGER ND,M,X,Y,N,Z
CALL GETIAB(F,VSTEP,M,SM,BM,AA,APAB 1)
P-0.0
DO 5 Z-l,N-l



67

ETA-5.o
DO 10 Xz1,m

IF ((X.EQ.M).OR.(X.EQ-1)) THEN
T(Z,2,X)=0.O
T(Z,3,X) -1.0
T(Z,",)=o.o

ELSE
T(Z,2,X)=(((-A(X-1)/VSTEP)+B(X.1)/2.0)/VSTEP)
T(Z,2,X) =T(Z,2,X)-PHI(1)/(2.0'VSTEP)
T(Z,3,X)=1.0/TSTEP+(2.0'A(X)/(VSTEPe.2))
T(Z,3,X) -T(Z,3,X) +PHI(2)*POETA
T(Z,4,X)=((-A(X+1)/VSTEP.B(X 1)/2.o)/VSTEP)
T(Z,4,X) -T(Z,4,X)+PHI( 1)/(2.OWVSTEP)

ENDIF

ETA-ETA+VSTEP
10 CONTINUE

P=P+i.0
5 CONTINUE

RETURN
END

SUBROUTINE GETAB(F,VSTEPM,SM,BM,AA,APA,B,Y)
REAL A(202),B(202),AA,AP,F(6,202),VSTEPZ,SM,BM,E(202)
REAL P(202),H(202),G(202),K(202),DB,DA,S1,S2,S3,S4,SS
INTEGER MIXY,N
Z-5.0
DO 10 X-1,M

CALL FINDA(FZ,VSTEP,AA,APM,A(X),Y)
CALL FINDB(F,ZVSTEPAA,APSM,BM,M,B(X),Y)
Z-Z+VSTEP

10 CONTINUE
ETA-l.a
DO 20 X-1,M

B(X)-B(X) F(Y,X)
G(X)=A(X) F(Y,X)
K(X)-ETA'B(X)*F(YX)
P(X)=ETA*F(Y,X)
E(X)-F(Y,X)
ETA=ETA+VSTEP
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20 CONTINUE

CALL SIMPS(H,M,VSTEP,S 1)
CALL SIMPS(G,M,VSTEPS2)
CALL SIMPS(K,M,VSTEP53)
CALL SIMPS(PIM,VSTEPS4)
CALL SIMPS(E,M,VSTEP,SS)
IF (SS.EQ.o.o) RETURN
DB-Si/S5
DA-(S2-S3-DB*S4)/SS
DO 30 X-1,M

B(X)-B(X)+DB
A(X)-A(X)+DA

30 CONTINUE
RETURN
END

SUBROUTINE FINDA(FZVSTEPAA,APM,AY)
REAL F(G,202)Z,VSTEPAA,APA,ETASOLNH(202) ,FD2
INTEGER XIM,Y
ETA-..s0
DO 10 X-1,M

CALL FD2(FIM,XVSTEPFD2,Y)
H(X)=FD2*ABS(ETA.Z)

ETA-ETA+VSTEP
10 CONTINUE

CALL SLMPS(HM,VSTEPSOLN)
A=(SOLN*AA)/(2.0*AP)
RETURN
END

SUBROUTINE FINDB(F,Z,VSTEPAA,APSM,BM,M,BY)
REAL F(S,202),Z,VSTEPAA,APIB,ETAG2,SOLN
REAL J(202),FD3,SM,BM
INTEGER XYM,Y
ETA-4.o
DO 10 X-1,M

CALL Ffl3(FM,X,VSTEP,FD3,Y)
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J(X)=FD3*ABS(ETA-Z)
ETA=ETA-lVSTEP

10 CONTINUE
CALL SIMPS(J,M,VSTEP,SOLN)
B-(AA/AP)O(SM/ (2.0 BM)) SOLN
RETURN
END

SUBROUTINE SIMPS(F,N,H,RE.SULT)
REAL F(202),H,RESULT
INTEGER N,NPANEL,NHALF,NBEGIN,NEND
NPANEL=N-i
NHALF-NPANEL/2
NBEG IN. 1
RESULT=O.o
IF ((NPANEL.2'NIIALF).NE.0) THEN

RESULT=3.0*H/8.0* (F(1) +3.O*F(2) +3.0*F(3)+F(4))
NBEGIN=4
IF (N.EQ.4) RETURN

ENDIF
RESULT-RESULT+H/3.O0 (F(NBEGIN)+4.o'F(NBEGIN+1)+F(N))
NBEGIN-NBEGIN+2
IF (NBEGIN.EQ.4) RETURN
NEND-N-2
DO 10 I'NBEGIN,NEND,2

RESULT-RESULT+H/3.0* (2.0F(I)+4.o*F(I+ 1))
10 CONTINUE

RETURN
END

SU13ROUTIN4E F2D2(F,M,X,VSTEPFD2,Y)
REAL F(6,202),FD2,VSTEP

INTEGER X,M,Y
IF (X.LE.1) THEN

FD2-(F(Y,X+2)-2.o0 F(Y,X+1)+F(Y,X))/(VSTEP*e2)
ELSE IF (X.OE.M) THEN

FD2-(F(YX)2.OF(YX1)+F(Y,X.2))/(VSTEPe.
2 )
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ELSE
FD2=(F(Y,X+ 1).2.0OF(Y,X) +F(Y,X- 1) )/(VSTEP"2)

ENDIF
RETURN
END

SUBROUTINE FD3(F,M,X,VSTEPFD3,Y)

REAL F(8,202),FD3,VSTEP
INTEGER XIM,Y
IF (XLE.2) THEN

FD3=(F(Y,X+3)-3.O'F(Y,X+2) +3.0'F(Y,X+1)-F(Y,X) )/(VSTEP *3)
ELSE IF (X.GE.M-1) THEN

FD3-(F(Y,X)-3.O*F(Y,X. 1)+3.0*F(Y,X-2)-F(Y,X-3)) /(VSTEP**3)
ELSE

FD3-(F(Y,X+2).2.0*F(Y,X+ 1)+2.0*F(Y,X-1)-F(Y,X-2) )/
+ (2.0'(VSTEP"3))

ENDIF
RETURN
EN D

SUBROUTINE MODIAG(M,D,MATRDCCSOLNTRBLE,N)
REAL A(8,202),B,SOLN(202),MATRIX(6,8,2o2),C(202)
INTEGER M,D,WXY,Z,TRBLE,N,I,MN1

TRBLE-0
DO 10 X=1,D+2

Do 20 Y=1,m
IF (X.EQ.D+2) THEN

A(X,Y)-C(Y)
ELSE

A(X,Y)-MATRIX(N,XY)

ENDIF
20 CONTINUE
10 CONTINUE

DO 30 I-2,M
A(2,I)=A(2,I)/A(3,I-1)
A(3,I)-A(3,I)-A(2,1)*A(4,I-1)
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30 CONTINUE,
DO 80 X=1,M

IF (A(3,X).EQ.o) THEN
PRINT 'MATRDC HAS NO SOLUTION'
TRBLE-99
GOTO gg9

ENDIF
80 CONTINUE

MN1-M-i
A(S,M)=A(S,M)/A(3,M)
DO 40 I-MNI,1,-1

A(5,1)=(A(5,I).A(4,I)'A(5,I+1))/A(3,I)
40 CONTINUE

DO 50 X=1,M
SOLN(X)=A(5,X)

50 CONTINUE
999 RETURN

END

SUBROUTINE AVE(F,M,N,JJ)
REAL F(6,202)
INTEGER X,N,M,Z,JJ
DO 443 Z-1,N.1

IF ((JJ.EQ. 1).AJND. (Z.EQ.2)) GOTO 443
IF ((JJ.EQ.2).AND. (Z.EQ. 1)) GOTO 443
DO 444 X-2,M-i

F(ZX)-(.02S*F(Z,X1)+F(Z,X)+.025*F(Z,X+1))/ 1.05
444 CONTINUE
443 CONTINUE

RETURN
END

SUBROUTINE TOT(F.FTOTAL,PHIN,M,VSTEPDU,DUPHII)
REAL F(8,202) ,FTOTAL(202) 1PHI(6),VSTEPG(202),NO(o) ,DU
REAL X1,X2,TOL,F1,F2,XERR
INTEGER M,N,XY,NLIM

L-(M+1)/2
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DO 10 X-1,N.1
DO 20 Y=1,L

20 CONTINUE
CALL SIMPS(G,L,VSTEPNO(X))

10 CONTINUE

Xl=0.0
X2=1.OEO
TOL-.0001
NLDM-50

30 CALL FCN(NO,Xl,N,FI)
CALL FCN(NO,X2,N,F2)
IF' (F1sF2.GT.0) THEN

X2-X2*10.0
IF (X2.GT.1.0E15) THEN

WRITE(,') 'NO SIGN CHANGE UP TO lEls'
RETURN

ENDIF
GOTO 30

ENDIF
DO 40 J-1,NLLM

DU-(Xl+X2)/2.o
CALL FCN(NO,DUN,FR)
XERR=ABS(XI-X2)/2.0
IF (XERR.LE. TOL) GOTO 1 000
IF (ABS(FR).LE.TOL) GOTO iaoo
IF (FR'Xl.GT.o.o) THEN

Xl=DU
Fl-FR

ELSE
X2-DU
F2-FR

ENDIF
40 CONTINUE

WRITE(,) 'NLIM EXCEEDED'
RETURN

1000 DO SoX-i,M

FTOTAL(X)-0.0
DO 60 Y-1,N-1

FTOTAL(X) -FTOTAL (X)+DU* (Y.1)*F(Y,X)



APPENDIX B - The TEC program



C DOS FILE TECINIT.FOR

C TEC DATA INITIALIZATION ACCESS CODE
C WRITTEN BY GREGORY L RIDDERBUSCH
C AUGUST 1986

* * *** * ** ** ** * ** ** ****************** ********** *********************

REAL ARRAY(9)
INTEGER IPARAM(5)
WRITE (*, 103)
OPEN (UNIT=2, FILE=' PINDATA.DAT' , STATUS=' OLD')
READ (2,101) (ARRAY (I), I=1, 9)
READ(2,102) (IPARAM(I),I=1,5)

10 WRITE(*,104) (ARRAY(I),I-1,7)
WRITE (*, 105)
READ (*, *) IVALUE
IF (IVALUE .EQ. 0) THEN

GOTO 20
ELSE

WRITE (*, 106)
READ(*,*) VALUE
ARRAY (IVALUE) =VALUE
GOTO 10

ENDIF
20 WRITE(*,107) (IPARAM(I),I=1,5)

WRITE(*,110) ARRAY(8),ARRAY(9)
WRITE (*, 105)
READ (*, *) IVALUE
IF (IVALUE .EQ. 0) THEN

GOTO 30
ELSE

WRITE (*, 108)
IF (IVALUE .EQ. 6 .OR. IVALUE .EQ. 7) THEN

READ(*,*) VALUE
ARRAY (IVALUE+2) -VALUE
GOTO 20

ELSE
READ(*,*) INEW

IPARAM (IVALUE) -INEW
GOTO 20

ENDIF
ENDIF

30 REWIND(2)
WRITE(2,101) (ARRAY(I),I=1,9)WRITE(2,10.2) (IPARAM(I),I-1,5)
CLOSE (2)
WRITE (*, 109)
STOP

c
101 FORMAT (F8 .1/F8.1/F6.3/F6.3/F6.3/F6.3/F7.2/F5.2/F6. 1)
102 FORMAT (I1/I1/I3/I3/I3)
103 FORMAT (1X,l'******************************************* /

TEC OPERATING CONDITIONS'/

104 FORMAT (//4X, 'CURRENT CONVERTOR OPERATING SETTINGS:'//
&7X,'I1. EMITTER TEMPERATURE: ',F8.1,' KELVIN',/
67X,'2. COLLECTOR TEMPERATURE: ',F8.1,' KELVIN',/
&7X,'3. EMITTER WORK FUNCTION: ',F6.2,' EV'/
&7X,'4. COLLECTOR WORK FUNCTION: ',F6.2,' EV'/
&7X,'5. CONVERTOR PRESSURE: ',F6.2,' TORR'/
&7X,'6. GAP THICKNESS: ',F6.2,' MM'/

i1I



&7X,'7. OPERATING CURRENT: ',F7.2,' AMPS/CMA21)
105 FORMAT(/4X,'ENTER. ID NUMBER OF VALUE TO BE CHANGED, O=NONE: '
106 FORMAT(4X,'ENTER NEW OPERATING SETTING: ')
107 FORMAT(//4X,'CURRENT TEC FUNCTION SETTINGS:'//

&7X,'l. DIAGNOSTIC LEVEL: ',13,' (0-RESTRICTED OUTPUT)'/
67X~l(1-FULL OUTPUT)'/
&7X~l(2-ENABLE SHEATH DIAGNOSTICS)'/
&7x~l(3-ENABLE DOT DIAGNOSTICS)'!

&7X,'2. RESTART SEQUENCE: 1,13,1 (0-DEFAULT STARTUP VALUES)'/
&7X~l(1-RESTART WITH PREVIOUS VALUES)'/

&7X,13. STEPS BETWEEN PRINTS: ',13/
&7X,'4. POINT DENSITY: ',13,' (11,21,31,...151)'/
&7X,'5. LOTUS SKIP FACTOR: ',13,' (1..99)')

108 FORMAT(4X,'ENTER NEW FUNCTIONAL SETTING: '

&II

110 FORMAT(7X,'6. TIME STEP: 0,F5.2,
&I (0.1,0.2,0.3,0.4,0.5)'/7X,'7. END TIME: ',

&F6.1,' (1.0,2.0, ...,10.0)')
END



C DOS FILE PRED1.FOR

C PROGRAM TEC

REAL CNE, ENE, ECHI, CCHI, EALPHiA, CALPHA, LAMNEB, LAMTAU
REAL DTP,T2,AN,AT,CN,CT,BN,BT,RE,KNTCHAR,PN,DT
REAL SMR,LAMDAR,NRTE,TC,ENR,I,ARECN,EGNDB,ELOSSB,NNR
REAL TAU(0:150),NEB(0:15ObDELTAT,SN,ST,PI,CA,CSAHiA,DZ
REAL DTAUNDZ,MUI(0:150),RMUR,TAUN(0:150),EMISS,TIME2,LCCHI
REAL NDOT1(O:150),TDOT1(0:150),NNB(O:150),TIME1,JNET,CV(O:150)
REAL FYEN,IVD,IKN,EGRADA,PHIB,EWF,CWF,D,ESOURCE(0:150)
INTEGER N,IDEN,EFIX,CFIX,CHXDOT, ICOUNT,NSTEPS,C,PC,LS,LC,EO,EC

C
COMMON /PRED/ CA, CSAHA,DT,DTAUNDZ,DZ,EGNDB,ELOSSB,ENR, I, IDEN, KN
COMMON /PRED/ LAMDAR, LAMNEB, LAMTAU, MUI ,N, NNB, NNR, MR, PI,RE, RMUR
COMMON /PRED/ TAUN,EFIX,CFIX,CHKDOT,FYEN,ENE,ECHI,CCHI,CNE
COMMON /PRED/ EALPHA, CALPHA, CV, ESOURCE, LCCHI

C
data risteps /l/

C
OPEN (UNIT-2,FILE='PINDATA.DAT' ,STATUS=' OLD')
OPEN (UNIT=4,FILE'IEXOUT.DAT' ,STATUS=' UNKNOWN')
OPEN (UNIT=7,FILE='LOTUS1.DAT' ,STATUS-' UNKNOWN')
OPEN (UNIT-8,FILE'IPREDRES.DAT' ,STATUS=' OLD')
OPEN (UNIT-9, FILE-' PRNTOUT .DAT' ,STTU UNKNOWN')

C....SET ABBREVIATED PRNTDAT SAMPLING POINTS WITH PC
C ... SET LOTUS SKIP COUNTER WITH LC
C

CALL INITIAL(TE,TC,EWF,CWF,PN,NSTEPS,DTP,T2,AN,AT,
&CI, CT,BNBT, TCHAR, SMR, ARECN, DELTAT, SN, ST, TAU, NEB, LS, pc)
C-pc
LC-LS
EOm100*LS
EC=EO

C
IF (CHKDOT . EQ. 3)

a OPEN (UNIT-9,FILE-'D:PDOTDIAG.DAT' ,STATUS-' UNKNOWN')
IF (CHKDOT .GT. 1)
& OPEN (UNIT-11,FILE-"D:PSTHDIAG.DAT,STATUS-UNKNOWN)

C
C--------------------------------------------------------------------------

EGRADA-0.0
ICALCS-INT (T2/DTP+0.001)
WRITE (*, 76)
DO 30 ICOUNT-0,ICALCS

WRITE(*,77) (icount),400* (icount) /ICALCS
TIME1-(icount) *DTP
TIME2- (icount+1) *DTP
CALL PREDCOR(TIME1, TIME2, TAU,NED, NSTEPS, TE, TC, TDOT1,NDOT1,

& PN,ARECNTCHR,AN,AT,BN,BT,CN,CT,IVD,SMR,EGRADA,PHIB,JNET)
VOUT-EWF + (PHIB + IVD/I + LCCHI)*TE/11600 - CWF
IF (C .EQ. PC) THEN

WRITE (9,67) TIME1,VOUT
IF (CHKDOT .EQ. 0) THEN
WRITE (9,70)
WRITE (9,71) (Il,NEB(Il),TAU(I1),I1-1,N)

ELSE
EMISS-ENR/NEB (1)
WRITE(9, 72) ENEECHI,EALPHA,CNE,LCCHI+CCHI,CALPHA,PHIB,



£ IVD/I,EMISS
WRITE(9,73) (I1,NDOT1(I1),NEB(I1),

TDOT1(I1),TAtJ(I1),I1=0,N+1)
ENDIF
IF (EFIX .EQ. 1) WRITE(9,74)
IF (CFIX .EQ. 1) WRITE(9,75)
c=O

END IF
c-c+1
IF (LC .EQ. LS) THEN
WRITE(7,78)TIME1,VOUT,ENE,JN'ET,ECHI,CCHI,EALPHA,CALPHA,

& PHIB,IVD/I,EMISS,NEB(1),NEB(11),TAU(1),TAU(11)
LC-0

END IF
LC-LC+l
IF (EC .EQ. £0) THEN
WRITE(4,*) TIMEl
WRITE(4,71) (I1,NEB(I1),TAU(I1),Il-1,N)
EC-0

END IF
EC-EC+l

30 CONTINUE
C---------------------------------------------------------------------------
C*****OUTPUT STARTUP VALUES TO PREDRES.DAT

WRITE(8,69) ENE,CNE,ECHI,CCHI,EALPHA,CALPHA,N
WRITE(8,68) (NEB(Il),TAU(I1),Il-0,N+1)
REWIND (8)
CLOSE (8)
STOP

C
67 FORMAT(//,'RESULTS AT TIME - ',F8.2,4X,'OPERATING VOLTAGE-',F6.3)
68 FORMAT(2F8.3)
69 FORMAT (F9.4/F9.4/F8.3/F8.3/F9.4/F9.4/I3)
70 FORMAT(/3X,' # NEB($ TAU(#)'/

--------------------------------- 1)
71 FORMAT(3X,13,4X,F6.3,7X,F5.2)
72 FORMAT(/3X, 'ENE -, ,F8.3,4X, 'ECHI-' ,F8.3,4X, 'EALPHA-' ,F8.3/

&3X, 'CNE -, ,F8.3, 4X, 'CCHI-' ,F8.3, 4X, 'CALPHiA-' ,F8.3/
63X,'PHIB-',F8.3,4X,'VD -',F8.3,4X,'EMISS -1,E8.3/
6/3X,' # NDOT(*) NEB(I TDOT(f) TAU(U',

6/3X---------------------------------------------------- 1)
73 FORMAT(3X,I3,4X,F7.4,4X,F6.3,7X,F7.4,4X,F5.2)
74 FORMAT(U***AT LEAST ONE UNPHYSICAL EMITTER BC WAS INVOKED.')
75 FORMAT('***AT LEAST ONE UNPHYSICAL COLLECTOR BC WAS INVOKED.')
76 FORMAT(/lX,' TEC CALCULATIONS BEGIN... (WAIT)...')
77 FORMAT(4X,'ITERATION #',13,' COMPLETION--',1I3,' %I)
78 FORMAT(16E13.6)

END

SUBROUTINE PREDCOR(T1,T2,TAU,NEB,NSTEPS,TE,TC,TDOT1,NDOT1,
+ PN,ARECN,TCHAR,AN,AT,BN,BT,CN,CT,IVD,SMR,EGRADAPHIB,JNET)

REAL Tl,T2oDT,AN,AT,BN,BT,CN,CT,IVD,LAMTAU,LAMNEBCNE
REAL TAU(0:150) ,NEB(0:150) ,TDOT1 (0:150) ,NDOT1 (0:150) ,ENE
REAL ECHI,CCHI,EALPHA,CALPHA,MtJI(0:150),I,DZ,TCHAR,LCCHI
REAL TE,TC,DTAUNDZ,PN,ENR,NR,EGNDB,ELOSSB,RE, SMR,LAMDAR
REAL RMUR,KN,NNR,ARECN,PI,CA,CSAHA,NNB(0:150) ,TAUN(0:150)
REAL MSOURCE(0:150),ESOURCE(0:150),CV(0:150),MU£A(0:150)
REAL NDOT2(0:150),TDOT2(0:150),TTILDA(0:150),NTILDA(0:150)
REAL J, IIVD,AVD,FYEN,EGRADA,PHIB, JNET



INTEGER N, CFIX, EFIX, IDEN, CHKDOT, NSTEPS
C

COMMON /PRED/ CA,CSAHA,DT,DTAUNDZ,DZ,EGNDB,ELOSSB,ENR, I, IDEN,KN
COMMON /PRED/ LAMDAR, LAMNEB, LAMTAU, MUI ,N, NNB, NNR, NR, 1, RE, RMLJR
COMMON /PRED/ TAUN,EFIX,CFIX,CHKDOT,FYEN,ENE,ECHI,CCHI,CNE
COMMON /PRED/ EALPHA, CALPHA, CV, ESOURCE, LCCHI

C
C****HANDLE EXCEPTIONAL CONDITIONS

DZ=1.0/ (N-i)
DT= (T2-T1) /NSTEPS
CFIX=0
EFIX-~0

C*****SET NEUTRAL TEMPERATURE AND DENSIT C
IF (TE.EQ.TC)THiEN

DO 10 I1=0,N+l
TAUN(I1) -1.0

10 CONTINUE
ELSE

Do 20 I1=0,N+1
TAUN(Il)ini.0+(TC/TE-1.0)* (11-1.0) /(N-i)

20 CONTINUE
ENDIF
NNR=965 .5E16*PN/TE
DO 30 Il-0,N+l

NNB(Il)=1.0/TAUN(Ii)
30 CONTINUE

DTAUNDZ-TAUN (N) -TAUN (1)
C*****SET TRANSPORT PARAMETERS

RTJR-LAMDAR* SMR
Do 40 I1=0,N+1

MUI (11) -SQRT (TAUN (11))
40 CONTINUE

C*****SET IONIZATION AND SARA PARAMETERS
CA-O.41283*ARECN*TCHAR* (NR/1.0E14) **2* (TE/1500) ** (-4.5)
CSAHA=LOG( (1.4027E20*NNR/NR/NR) *(TE/1500) **1.5)

C----------------------------------------------------------------------
DO 70 ICOUNT-0,NSTEPS-1

C ----- PREDICTOR STEP
IF (CHKDOT.EQ.3) WRITE(9,81)
CALL DOT (NDOT1,TDOT1,NEB,TAU,EGRADA,PHIB,JNET)
DO 45 I1-0,N+1

NTILDA(I1)=NEB(I1)+AN*DT*NDOT1 (Ii)
TTILDA(I1) =TAU (Ii) +AT*DT*TDOT1 (Il)

45 CONTINUE
C ----- CORRECTOR STEP

IF (AN.EQ.0.0.AND.AT.EQ.0.0) THEN
DO 50 I1-0,N+1

NDOT2 (I1)-0.0
TDOT2 (I1)-0. 0

50 CONTINUE
GOTO 55

ELSE
IF (CHKDOT.EQ.3) WRITE(9,82)
CALL DOT (NDOT2, TDOT2,NTILDA, TTILDA, EGRADA, PHIB, JNET)

ENDIF
55 Do 60 I1-0,N+l

NEB (Il) -NEB (Ii) +DT* (BN*NDOT1 (Ii)+CN*NDOT2 (Ii))
TAU(I1) -TAU(Il) +DT* (BT*TDOT1 (Ii) +CT*TDOT2 (Ii))

60 CONTINUE
70 CONTINUE



C--------------- -------------------
C*****UPDATE TIME DERIV.S, IMAGE POINTS, AND FIND PLASMA POWER GAIN

CV(o)'.0.0
CV(N+1)-0.0
ESOURCEM()-0.0
ESOURCE (N+1) -0.0
IF (CHKDOT.EQ.3) WRITE(9,83)
CALL DOT (NDOT1, TDOT1, NEB, TAU, EGRADA, PHIB, JNET)
IIVD-0.0
DO 75 I1=2, (N-2.)

IIVD=IIVD+ (ESOURCE (Ii) -CV(I1) *TDOT1 (Ii))
75 CONTINUE

AVD=0.5* (ESOURCE (1)-CV(1) *TDOT1 (1)) +0.5* (ESOtJRCE (N) -CV(N)
+ *TDOT1 (N))
IVD= (AVD+IIVD) *DZ+2 .0*1* (TAU (1) -TAUJ(N) ) -(NEB (1) *ENE/KN)

+ *(TAU(1)-1)
RETURN

C
81 FORMAT(//,'CALL DOT FOR FIRST TIME.',//)
82 FORMAT(//,'CALL DOT FOR SECOND TIME.",//)
83 FORMAT(//,'CALL DOT FOR LAST TIME.',/!)

END
c



c DOS FILE PRED2.FOR

SUBROUTINE DOT (NEBDOT, TAUDOT, NEB, TAU, EGRADA, PHIB, JNET)

REAL A,ALPHA(0:150),BETA(0:150),CA,CALPHA,CCHI,CDETA,CNE,SIGMA
REAL CTETA,CTZ,CV(0:150) ,CONVECT,D21B,D32B,DT,DZ,DGDU,DELU
REAL DETAP,DTAUNDZ, ESOURCE (0:150) 1 ELOSSB,EGNDB,ETZ, ETETA, DELTAU
REAL ENE,ECHI,ENR,F(15),FYEN,GAMMAP,GAMMAM,GU,I,IB,K(0:150)
REAL LAMTAU,LAMDAR,LAMNEB,MUI(0:150),MSOURCE(0:.150),MUISOLD
REAL MURSOLD,MUIS,MURS,MUEA(0:150),NR,NNR,NEB(0:150),NBCOA
REAL NBC1A,NBC1B,NBC1C,NES2,NNB(0:150) ,NUE5 NA(0:150) ,NB(0:150)
REAL NEBU(0:-150),ND(0:150),NS(0:150),NEBDOT(0:150),NEBA(0:150)
REAL NEBV(0:150) ,PC(0:150) ,PI,PB,PBP,POHMIC,P0,QKP,QKM,RE,RMUR
REAL TAU(0:150),TAUN(0:150),TAUDOT(0:150),TA(0:150),TB(0:150)
REAL TS(0:150),TAUA(0:150),TAUB(0:150),TAUC(0:150),TAUV(O:150)
REAL TBCOB,TBCOC,TBClA,TBC1B,TBClC,U,CSAHA,DETA,EALPHA,KN,KDE
REAL NEBB(0:150),TAUU(0:150),NEBC(0:150),NC(0:150),NBCOB,LCCHI
REAL NBCOC,TC(0:150) ,TBCOA,JNET,SMR,EGRADA,PHIB,BIGU,JRC,CGRADA
INTEGER CFIX, EFIX, CHKDOT, CFLAG

C
COMMON /PRED/ CA,CSAHA,DT,DTAUNDZ,DZ,EGNDB,ELOSSB,ENR, I, IDEN,KN
COMMON /PRED/ LAMDAR, LAMNEB, LAMTAU, MUI, N, NNB, NNR, NR, P1,RE, RMUR
COMMON /PRED/ TAUN,EFIX, CFIX, CHKDOT,FYEN, ENE,ECHI, CCHI, CNE
COMMON /PRED/ EALPHA, CALPHA, CV, ESOURCE, LCCHI

C
F(1)-5.74E-3
F (2) -1.40E-3
F (3)-=2.3
F(4)-0.2
F(5)-2.70E-2
F (6) -5.74E-3
F(7)-4.24E-2
F(8)-2.82
F (9) =0.0
F(10)-11.607
F(11)-0.0
F(12)=27.04

C*****SET THERMAL & ELECTRICAL CONDUCTIVITIES AT 0+ (E) &1- (C)
IF(TAU(1) .LT.0.1)THEN

TAUI(1)=0.1
EFIX-1

END IF
IF (TAU (N)-.IT. 0. 1) THEN

TAU(N)0.1
CFIX-1

END IF
IF(RE.EQ.0.5)THEN

DO 10 Il-0,N+1
MUEA(Il) -TAUN (Ii)

10 CONTINUE
END IF
IF(RE.EQ.0.0)THEN

DO 20 1=0,N+l
MUEA(Il)-TAUN(Il)/SQRT(TAU(Il))

20 CONTINUE
END IF
IF (RE. EQ. -0. 5) THEN

DO 30 I1-0,N+1
MUE-A(Il) -TAUN (Ii) /TAU(Il)



30 CONTINUE
ELSE

DO 40 Il=0,N+1
MUEA(I1)-TAUN(Ii) *(TAU(Iil)** (RE-0.5))

40 CONTINUE
ENDIF
DO 50 Ii=0,N+i

K(Ii)=( (RE+2.0) /FYEN) *MTJA(I1) *NEB(I1) *TAU(II)
PC (Ii)=NEB(Ii) *(TAU(I1) +TAUN (Ii))

50 CONTINUE
DETA-ALOG(K(2)/K(1))*DZ/ (K(2)-K(i))

C*****DETERMINE EMITTER SHEATH*****
JNET= (I*KN*i .595769) /(SORT (TAU (1) )*NEB (1))
CALL SHEATH(JNET,ENR/NEB(1) ,TAU(i) ,ECHI,PHIB,EALPHiAENE)

C-----FIND EMITTER (0+) DERIVATIVES FROM B.C.
IF(ECHI.LE.1E-5.OR.ECHI.GE.20) EFIX-i
ETETA= (TAU (1) -1)*ENE*NEB (1) /KN-I* (ECHI-TAU (1)/2)
ETZ=ETETA/K (1)
EPCZ= (SORT (PI/8/EALPHA) /LAMDAR/KN) *NEB (1) /MUI (1)-I/MUEA(i)
ENZ= (EPCZ-NEB (1) *(ETZ+DTAUNDZ) )/I(TAU (1) +TAUN (1))

C*****SOLVE COLLECTOR SHEATH
CFLAG=0
CNE-0.0
U-1.0
GU-G(U,NEB (N) ,TAU(N) ,I,KN)
DELUmO .05
DO 80 11-1,50

DGDU=(G (U+DELU, NEB (N) ,TAU (N) ,I, KN) -GU) /DELU
DELTAU=-GU/DGDU
U-U+DELTAU
GU=G(U,NEB(N),TAU(N) ,I,KN)
IF (ABS(GU).LE.O.001) THEN

CCHI-U*TAU (N)
GOTO 85

ENDIF
80 CONTINUE

CCHI - 0.0
WRITE c*,205)
IF (CHKDOT .GT. 1) WRITE(i1,205)

C****DETERMINE DERIVATIVES AT COLLECTOR (1-) FROM B.C.
85 IF (CHKDOT .GT. 1)

&WRITE(11.,206) EGRADA,ALPHA2,TAU(1) ,ENR/NEB(1),
&JNET,ECHI,PHIB,ENEEALPHA, CCHI, CALPHA, IFLAG,RCODE
OPH - -CCHI/TAU(N)
IF(DPH.LT.0.0000001) DPH - 0.0000001
CALPHA-(i.0/TAU(N))*(3.14159265/2)*( (1.0 + ERF(SQR~r(DPH)))

+ - (1./2.)*(1.0 + ERF(SQRT(4.0*DPH))) )**2 /CEXP(-DPH)i
+ - (l./4.)*EXP(-4.0*DPH) )**2
LCCHI - 0.0
IF(CCHI.LT.0.0) THEN

LCCHI -CCI

CCHI -0.0

END IF
CTETA--I* (CCHI-TAU (N) /2.0)
CTZ-CTETA/K (N)
CDETA-ALOG (K (N) /K (N-i) ) *D/(K (N) -K (N-i))
NBCOA-TAU (1)+TAUN (1)
NECOB-SORT (PI/EALPHA/8 .0) /LAMDAR/KN/MUI (1) ENE*NEB (1) /K(l) *

+ (TAU(1)-i.0)-DTAJNDZ



NBCOC=I*NEB(1) /K(1) *(ECHI-TAU(1) /2.0) -I/MUEA(l)
NBClA=TAUJ(N) +TAUN (N)
NBCiB--SORT (PI/CALPHA/8 .0) /LAMDAR/KN/MJI (N) -CNE*NEB (N) /K (N) *

+ (TAO (N) -1.0) +DTAtJNDZ
NBC1C=-I*NEB (N)1K (N) *(CCHI-TAU (N) /2.0) -I/MUEA (N)
TBCOA=1 .0
TBCOB=ENE*NEB (1) /KN+I/2.0
TBC0C=-ENE*NEB (1) /KN-I*ECHI
TBC1A--l.0
TBC1B=CNE*NEB (N) /KN-I/2 .0
TBClC=-CNE*NEB (N) /KN+I*CCHI
NEBA (0) =(NBCOA*LAMIEB)/ (2. 0*DZ)
NEBB (0) =LAMNEB*NBC0B
NEEC (0) =NBCOA*LAMNEB/ (2. 0*DZ)
NEBV(O)-NBCOB* (1.0-LAMNEB) *NEB (1) +NBCOC- (1.0-LAMNEB) *

+ NBCOA* (NEB (2) -NEB (0) )/(2. 0*DZ)
TAUA (0) TBCOA*LAMTAU/ (2. 0*DETAP)
TAUB (0) =LAMTAU*TBC0B
TAUC (0) =TBC0A*LA4TAU/ (2. 0*DETAP)
TAUV(0) =TBCOB* (1. 0-LAMTAU) *TAU (1) +TBCOC- (1. 0-LAMTAU) *

+ TBCOA* (TAU(2) -TAU(0) )/ (2.0*DETAP)
NEBA(N+1)in(NBC1A*LAMNEB) /(2.0*DZ)
NEBB (N+1) =-LAMNEB*NBC1B
NEEC (N+i) =-NBCiA*LAMNEB/ (2. 0*DZ)
NEBV(N+1)=NBClB* (1.0-LAMNEB) *NEB(N)+NBCC(10LAMEB) *

+ NBC1A* (NEB (N+1) -NEB (N-i) ) (2. 0*DZ)
TAUA (N+1) =TBC1A*LAMTAU/ (2. 0*CDETA)
TAUB (N+1) =-LAMTAU*TBC1B
TAUC (N+1) =-TBCiA*LAMTAU/ (2. 0*CDETA)
*TAUV(N+1)=TBC1B* (1.0-LAMTAU) *TAU (N) +TBC1C- (1.0-LAMTAU) *
+ TBC1A*(TAU(N+1)-TAU(N-1) )/ (2.O*CDETA)

C*****INITIALIZE GAMOMAP & QKP FOR LOOP
MURS-MUI (2) /MUEA(2) +MUI (1) /MUFEA(1) *(1-2*DZ* (

+ (0.5-RE)*ETZ/TAU(1)-0.5*DTAUNDZ/TAUN(l)))
GAMMAPmO.5*(( (MUI (1) +MUI (2) )* (PC(1)-PC(0))

+ )/DZ+I*MURS)
QKP- (TAO (1) -TAU (0) ) /DETA
MUIS=MUI (1) +MUI (2)

C--------------------------------------------------------------------
DO 100 J=1,N

C-----UPDATE FOR NEW J
GAMMAM-GAMMAP
QKM=QKP
DETA-DETAP
MJI SOLD-MUI S
MURSOLD-MURS
IF (J.NE.N) THEN

DETAP-ALOG (K (J+1) 1K (J) ) *D/(K (J+1) -K (J))
MUIS-MUI (J) +MUI (J+1)
MURS-MUI (J) /MUEA(J) +MUI1(J+1) /MTJEA(J+1)

ELSE
MURS-MURS+2*DZ* (MUI (N) /MUEA (N)) *((0.5-RE) *CTZ/TAU (N)

+ -0.5*DTAUNDZ/TAUN (N))
END IF

C-----FIND AMBIPOLAR FLUX AT J+1/2
GAMMAPO0.5* ((MUIS* (PC (J+1) -PC (J)) )/DZ+I*MURS)

C ----- FIND MASS SOURCE AT J
A-CA/TAU(J) **4.5
NES2-NNB (J) *TAJ(J) **1.5*EXP (CSAHA-EGNDB/TAU (J))
D2 13-F (7) * (1+F (8) /TAU (J) )



D32B=F (2) *EXP (F(3) /TAU(J))
* IB=A*NES2* (1+F (1)/NEB (J)) / (+D21B* (l+D32B/NEB (J) )/NEB (J))

P0=1+ (F (4) /NEB (J)) * (+F (5) /NEB (J) ) / (+F (6) /NEB (J))
NUE-NEB (J)*NEB(J) /NES2
MSOURCE (J) -NEB %J) *IB* (1P0*NUE)

IF (IDEN.EQ.1) MSOURCE (J) =NEB (J) *A*NEs2
NEBDOT (J) =1MUR* (GAMMAP-GAMdMAM) /DZ+MSOURCE (J)
NA(J)-RMUR*MUIS*(TAJ(J+1)+TAUN(J+1) )/2.0/DZ**2
NB (J) inpM4R* (MUIS+MUISOLD) *(TAO (J) +TAUN (J) )/2. OIDZ**2
NC(J)=RMUR*MUISOLD*(TAU(J-1).TAUN(J-1) )/2.O/DZ**2
ND (J) 1* (MURS-MURSOLD) *RMJR/DZ/2 .0

+ +NEB(J)*IB*(1.O+SQRT(PO/NES2) *NEB(J))
C NS (J) =IB* (1. -P 0 *NUE)

NS (J) -- NEB (J) *IB*(1. O+SQRT (PO/NES2) *NEB (J) )*SQRT (PO/NES2)
IF (IDEN.EQ.1) NS(J)=A*NES2

N",BA(J)--nDT*NA(J)* ANE
NEBE (J) =1. 0+DT*NB (J) *.AMB-DT*NS (J) *LAMNEB
NEBC (J) =-DT*NC (J) *LAMNEB
NEBV(J)-NEB(J)+DT*NA(J) *(1.0-LAMNEB) *NEB(J+1)..DT*NB(J) *

+ (1.0-LAMEB)*NEB(J)+T*NC(J)*(1.0-LAM4EB)*NEB(J-1)+
+ DT*ND (J) +DT*NS (J) *(1. 0-LAMNEB) *NEB (J)

KDE-K (J) *(DETA+DETAP) /2
QKP-(TAO (J+1) -TAU (J) )/DETAP
CONVECT-- (1.5) *1*(DETA*QKP+DETAP*QKM) /(2*KDE)
SIGMA-NES(J) *MTJWA(J)
POHMIC-I* (I/SIGMA+TAU (J) *(NEB (J+1) -NEB (J-1))

+ / (2 *DZ *NEB (J)) )
PBP- (F (9) *NNR/NR) *EXP (-F (10) /TAU (J))
PB- (F (11) *NNR/NR) *E.P (-F (12) /TAU (J))
CV(J) -1 5*NEB5(J) +NNB (3) *(F (10) *PBP+F (12) *PB*NJE)

+ / (TAU(J) *TAU(J))
ESOURCE (J) =-ELOSSB*MSOURCE (3)

+ -NNB (') *PB* (2*NUE*NEBDOT (J) /NEB (3))
TAUDOT (J) - ((QKP-QKM) /KDE+CONVECT+POHMIC+ESOtJRCE (3))

+ /CV(J)
TA(J)-1.0/ (DETAP*KDE*CV(J))
TB (J) -(1. 0/DETAP+1 .0/DETA) /KDE/CV (3)
TC(J) -1.O/DETA/KDE/CV(J)
TS (J)-(CONVECT+POHMIC+ESOURCE(3')) ICy(3')
TAUA (') =-DT*LAMTAU*TA (J)
TAOS (3')-1. 0+DT*LAMTAU*TB (3)
TAUC (3') =DT*LAMTAU*TC(3')
TAUV(J)-TAU(J)+DT* (1.0-LAMTAU) *TA(J) *TAU(J+1)

+ -DT*(1.0-LAMTAU)*TB(J)*TAU(J)
+ +DT*(1.0-LAMTAU) *TC(J) *TAU(J-.1)
+ +TS(J)*DT

IF (CIKDOT.EQ.3) WRITE(9,201) J,NEB(J),J,TAU(J),
+ J,I4SOURCE(J) ,JPB,PBP,A,D21B,D32B,P0, IB,
+ NUEINES2,QKPoGAMMAP, DETAP,MURS

100 CONTINUE
C........................................................................

NEBC(0)-NEBC(0)-NEBC(1) *NEBA(0) /NEBA(1)
NEBB (0)-NES (0) -NEBE (1) *NEBA(0) /NEBA(1)
NEBV(0) -NEBV(Q) -NEBV(1) *NEBA(O) /NEBA(1)
NEBA (0) -NEEB (0)
NEE (0) -NEEC (0)
NESA (N+1) -NESA(N+1) -NEBA (N) *NEBC (N+1) /NEBC (N)
NESS (N+1) -NEBS (N+1) -NESS (N) *NEBC (N+1) /NEBC (N)
NEBV(N+1) -NEBV(N+1) -NEBV (N) *NEBC (N+1) /NEBC (N)
NEEC (N+1) -NESS (N+l)



NEBE (N+1) -NEBA(N+1)
TAUC(0)-TAUC(0)-TAUC(1) *TAUA(O) /TAUA(1)
TAUB(0)MTAUB(0)-TAUB(1) *TAUA(O) /TAUA(1)
TAUV(0)=TAUV(0)-TAUV(1) *TAUA(0) /TAUA(1)
TAUA (0) -TAUB (0)
TAUB (0) -TAUC (0)
TAUA(N+1)-TAUA(N+1) -TAUA (N) *TAUC (N+1) /TAUC (N)
TAUB(N+1)-TAUB(N+1)-TAUB(N) *TAUC(N+1) /TAUC (N)
TAUV(N+1) -TAUV(N+1) -TAUV(N) *TAUC (N+1) /TAUC (N)
TAUC (N+1) =TAUB (N+1)
TAJB (N+1)=TAUA(N+1)
ALPHA(0) =-NEBA(O) /NEBB (0)
DO 110 11-1,N

110 CONTINUE
ALPHA (N+ 1) - 0. 0
BETA(0) -NEBV(0) /NEBB (0)
DO 120 I1=1,N+1

+ *pATLP(I-)+NEBB(Il))
120 CONTINUE

NEBU (N+1) -BETA (N+1)
DO 130 I1=N,0,-l

NEBU(11)-ALPHA(I1) *NEBU (11+1)+BETA(I1)
130 CONTINUE

ALPHA(0)=-TAUA(0) /TAUB(0)
DO 140 111l,N

ALPHA(I1)--TAUA(Il) /(TAUC (Ii)*ALPHA(I...) +TAUB (Ii))
140 CONTINUE

ALPHA (N+1) -0.0
BETA(0) =TAUV(0) /TAUB(0)
DO 150 Il-l, (N+1)

BETA(I1)=(TAUV(I1)-TAUC(I1) *BETA(I1..1))/(TAUC(I1)
+ *ALPH.A(Il-l)+TAUB(Il))

150 CONTINUE
TAUU (N+1) -BETA (N+l)
DO 160 I1-N,0,-1

160 CONTINUE
DO 170 I1=0,N+1

TAUDOT(I1)=(TAUU(I1)-TAU(I1) )/DT
NEBDOT (Ii) -(NEBU (Il) -NEB (Ii)) /DT

170 CONTINUE
IF (CHKDOT.EQ.3) THEN

WRITE(9,202) (I1,.NEBDOT(I1),.I1,TAUDOT(I1).I1=0,.N+l)
WRITE(9,203) (I1,ALPHA(I1),I1,BETA(I1),I1-0,N+l)
WRITE(9,204) (I1,NEBU(I1),I1,TAUU(I1),I1-O,N+1)

END IF
RETURN

C
201 FOMAT ('NEB(V, 12,') -',F8.3,' TAU(' ,I2,')-',F8.3,

6' MSOURCE(',I2,')-',F8.3/'J-' ,I2,' PB-',F8.3,
V' PBP-',F8.3/'A-',F8.3,' D21B-',F8.3,' D32B-',F8.3/
&'lpo-',FS.3,' IB-',F8.3/'NIE-' ,F8.3,' NES2-',F8.3/
&'QKP-',FS.3,' GAZ4MAP-',F8.3/'DETAP-' ,F8.3,' MURS-',F8.3)

202 FORMAT('NEBDOT(',I2,')-' ,F8.3,' TAUDOT(',12,')-' ,F8.3)
203 FOiRMAT('ALPHA(',I2,')-' ,F8.3,' BETA(' ,I2,')-',F8.3)
204 FORMATC'INEBU(',I2, I)-',F8.3,' TAJU(' ,I2,')-',F8.3)
205 FORMATC//2X,'COLLECTOR SHEATH FAILED TO CONVERGE',//
206 FORXAT(/1Xo'EGRADA-',F7.3,3X,'ALPHA2-',F7.3/



&1Xl,'rLE' ,FS.2,3X, 'EMISS-' ,F9.1,3X, 'JNET=' ,F7.4/
&1X, 'ECHI-' ,F7.3, 3X, 'PHIB-' ,F7.3, lX,'ENE-' ,F1O.3, 3X,
&'EAPHA-' ,F7.4/lX, 'CCHI' ,F7.3, 3X, 'CALPHA' ,F7.4/1X,
&' IFLAG-' ,Il, 3X, 'RCODE-' ,A1)

END

FUNCTION G(UX,NEB,TAU, 1,1N)

REAL UX,NEBTAU, I,IN,SQX,GX
DOUBLE PRECISION ERF
IF (UX.L.O .0) THEN

SQX=0..0
ELSE

SQX-SQRT (UX)
END IF

C G=UX*LOG(1.0+ERF(SQX)) - LOG(NEB*SQRT(TAU) /I/KN/2.0)
G-UX - LOG(NEB*SQRT(TAU)/I/KN/2.O)
RETURN
END

FUNCTION ERF (X

DOUBLE PRECISION X1,SUM,ERF,ERFX,P(3,6),Q(3,6),PI,TSUM1,TSUM2
INTEGER IPOWER (3)
DATA IPOWER/2,1,-2/
PI-3.1415926535898
TSUM1-0.0
TSUM20.0
x1-x
IF (Xl .LT. 0.0) Xl--XI.
IF (Xl .GT. 5.93) THEN

ERFX-1.0
GOTO 1240

END IF
IF (Xl .EQ. 0.0) THEN

ERF-0.0
GOTO 1245

ELSE
IFLAG=2.

END IF
IF (Xl .LE. 4.0 -AND. Xl .GE. 0.47) IFLAG-2
IF (Xl .GT. 4.0) IFLAG-3
DO 1205 J-1,6

TSUti4-TSUMl + P(IFLAG,J) * (X1**(IPOWER(IFLAG) *(J-l)))
TSUM2-TSUM2 +- Q(IFLAG,J) * (X1**(IPOWER(IFLAG)*(J-1)))

1205 CONTINUE
SU!4-TSUMI /TST3M2
GOTO (1210,1220,1230) ,IFLAG

1210 ERFXmX*SUMh
G070 1240

1220 ERFX-1.0 - DEXP(-Xl*Xl)*SUM
GOTO 1240

1230 ERFX-1.0 - DEXP(X*Xl)/Xl*(l.0/DSQRT(P)+(l.0/(Xl*Xl)*SUM))
1240 ERE-ERFX

IF (X .LT. 0.0) ERF--ERFX
1245 RETURN

DATA P(1,l)/3.20937758913847D+03/,P(l,2)/3.774852376853D+02/
DATA P(1,3)/1.1386415415105D+02/,P(l1,4)/3.1612374387057/
DATA P(1,5)/1.85777706184603D-01/,P(,6)/0.0/



DATA Q(1,1)/2.84423683343917D+03/,Q(1,2)/1.2826165077372D+03/
DATA Q)(1,3)/2.44024637934444D+02/,Q(1,4)/2.36012909523441D)+O1/
DATA Q(1,5)/1.O/,Q(1,6)/O.O/,P(2,1l)/2.2898992851659D+O1/
DATA P(2,2)/2.6094746956075D+O1/,P(2,3)/1.4571898596926D+O1/
DATA P(2,4)/4.2677201070898/,P(2,5)/5.6437160686381D-O1/
DATA P(2,6)/-6.0858151959688D-O6/,Q(2,1l)/2.2898985749891D+O1/
DATA Q(2,2)/5.1933570687552D+O1/,Q(2,3)/5.0273202863803D+O1/
DATA Q(2,4)/2.6288795758761D+O1/,Q(2,5)/7.5688482293618/
DATA Q(2,6)/1.O/,P(3,1)/-6.58749161529838D-04/
DATA P(3,2)/-1.60837851487423D-02/,P(3,3)/-1.2578172611123D-O1/
DATA P(3,4)/-3.60344899949804D-O1/,P(3,5)/-3.05326634961232D-O1/
DATA P(3,6)/-1.63153871373021D-02/,Q(3,1)/2.3352049762687D-03/
DATA Q(3,2)/6.05183413124413D-02/,Q(3,3)/5.27905102951428D-O1/
DATA Q(3,4)/1.87295284992346/,Q(3,5)/2.56852019228982/,Q(3,6)/1/
END



CALPHA=0.5
DO 10 Ii=0,N+1

NE (Ii) =11
NEBCAL(Ii)-(NEB(Ii) -1) /(N-i)
NEB (Il)m4.0* (KN+NEBCAL(I1) * (-NEBCAL(Ii)))
TAU(I1)-2700/TE

10 CONTINUE
END IF

** ***MISCELANEOUS DEFAULTS
ARECN-0.31
EGNDB-3 .896/8. 609E-05/TE
ELOSSB-EGNDB
SN=DELTAT* (N-i) **2*3* JMAR*SMR* (BN+CN)
ST=DELTAT* (N-i) **2*0.667* (RE+2) *2** (RE+0.5) *(BT+CT) /FYEN

C*****NONDIMENSIONALIZE CURRENT AND CALCULATE RICHARDSON EMISSION
VALUE=EXP (-ii600.0*EWF/TE)
ENR= (7. 676E+14* (TE) **1 .5*VALUE) /NR
I-J / (KN*NR* (3. 1265322E-13) *SQRT (TE))
JRIC=120 .0*TE*TE* (EXP (-11600. 0*EWF/TE))

C*****OUTPUT INITIALIZATION DATA TO PRNTOUT.DAT
WRITE(9,155) TE,TC,EWF,CWFPN,D,J,CHKDOT,OFILE,N,
a JRIC,NR,TCHAR, I,ENR,KN, SIR,LAMDARI
& NSTEPS,T2,DELTAT,DTP,LS
IF (CHKDOT.GT.1) THEN

WRITE(9,160) ECHI,ENE,EALPHACCHI,CNE,CALPHAAN,AT,
& BN, BT, CN, CT, SN, ST, LAMNEB, LAMTAU, ELOSSB,,
& ARECN, EGNDB, IDEN, FYEN, RE

WRITE(9,159) (I1,NEB(I1),I1,TAU(I1),I1-1,N)
END IF
WRI TE (9, 16 1)

C*****CHiECK FOR UNREAL CURRENT CONDITION J/JR > 1.0
IF (2*KN*IIENR .GE. 1.0) THEN

WRITE (,15 3)
STOP

END IF
RETURN

C
C-----------------------------------------------------------------------

150 FRA(X'********************I

&JX'****TEC START

151 FORMAT(F8.1/F8.i/F6.3/F6.3/F6.3/F6.3/F7.2/F5.2/F6. 1/

152 FORMAT(F9.4/F9.4/F8.3/F8 .3/F9.4/F9.4/13)
153 FORMAT(1X,'***SMALL J IS TOO LARGE ... CASE TERMINATED***'//)
154 FORM&T(2F8.3)
155 FORMAT(12X,' TEC INITIAL DATA SUMMflARY#/

-------------------------------------------------------------- /
fl1X,'PHYSICAL OPERATING CONDITIONS ------ //
Lix,' EMITTER TEMPERATURE (TE)-',F8.i,' KELVIN'/
&lX,' COLLECTOR TEMPERATURE (TC)-',F8.i,' KELVIN'/
&lX,' EMITTER WORK FUNCTION (EWF)- 1,F6.3,1 EV'/
&lX,'COLLECTOR WORK FUNCTION (CWF)- 1,F6.3,1 EV'/
&ix,' CONVERTOR PRESSURE (PN)- 1,F6.3,1 TORR'/
Lix,' GAP THICKNESS (D)- 1,F6.3,1 MM'/
Lix,' OPERATING CURRENT (J)- ',F7.3,' AMPS/CMA2I//
&ix,, TEC FUNCTION SETTINGS -----'I//
&Lx,' DIAGNOSTIC LEVEL (CHKDOT)- ',Ii/



C DOS FILE PRED3.FOR

SUBROUTINE INITIAL(TE,TC,EWF,CWF,PN,NSTEPSDTP,T2,AN,AT,
&CN, CT, BN, BT, TCHAR, SMR, ARECN, DELTAT, SN, ST, TAU, NEB, LS, pc)

REAL CA, CSAHA, CNE, ENE, ECHI, CCHI,EALPRA, CALPHA, LAMNEB, LAMTAU
REAL DT,DTAUNDZ,DTP,T2,AN,AT,CN,CT,BN,BT,RE,KN,TCHAR,PN
REAL SMR,LAMDAR,NR,TE,TC,ENR,IARECN,EGNDB,ELOSSB,MUI(0:150)
REAL TAU(0:150),NEB(0:150),DELTAT,SN,ST,PI,TAJN(0:150),NNB(0:150)
REAL NEBCAL(0:1-50) ,FYEN,LAMDAE,LAMDAI,EWF,CWF,J,RMUR,LCCHI
REAL ESOURCE(0:150),CV,JRIC,VALUE,PHISDAT(154,6),PHIBDAT(21,6)
INTEGER N, IDEN,CHKDOT,OFILE,EFIX,CFIX,NSTEPS,LS,pc

C
COMMON /PRED/ CA,CSAHA,DT,DTAUNDZ,DZ,EGNDB,ELOSSB,ENRI,IDEN,KN
COMMON /PRED/ LAMDAR, LAMNEB, LAMTAU, MUI, N, NNB, NNR, NR, P1,RE, RMUR
COMMON /PRED/ TAUN,EFIX,CFIX,CHKDOT,FYEN,ENE,ECHI,CCHI,CNE
COMMON /PRED/ EALPHA, CALPHA, CV, ESOURCE, LCCHI
COMMON IXSHEATH/ PHISDAT,PHIBDAT

C
WRITE (*, 150)

C****READ FILE INDATA.DAT
READ(2,151) TE,TC,EWFCWF,PN,D,J,DTP,T2,CHKDOT,OFILE,pc,N,LS.-
REWIND (2)
CLOSE (2)

C**READ FILE PRECOR.DAT
C CALL DATAINT
C*****SET NUMERICAL PARAMETERS, RECOMPILATION REQUIRED TO CHANGE

AN-0.5
AT=0.5
CN=0.5
CT=0.5
BN-1. 0-CN
BT-1.0-CN
P1=3.1415926
IDEN-0
RE=O.0
FYEN-1.0
NR=1.0E14
DELTAT=DTP /NSTEP S
LAMNEB-1.0
LAMTAU-1.0

C*****SET TRANSPORT PROPERTIES
LAMDAE-1.0/32.3/PN
LAMDAI-1 .0/96. 6/PN
LAMDARLADAI /LAMDAE
KN-LAMDAE/D
TCHARD/ (KNJ*3.75* (TE**.5))
SMR-1. 0/4 92 .2

C*****EXECUTE OFILE SELECTION SETTING
IF (OFILE .EQ. 1) THEN

READ(8,152) ENE,CNE,ECHI,CCHI,EALPHA,CALPHA,N
READ(8,154) (NEB(I1),TAU(I1),I1-0,N+1)
REWIND (8)

ELSE
ENE-0.8
CNE-0.8
ECHI-3.0
CCHI-3.0
EALPHA-0.5



lx,' RESTART SEQUENCE (OFILE)= ',11/
six"' POINT DENSITY (N)=',13//
fiX,'PHYSICAL PARAMETERS EVALUATED ------'//
liX,' RICHARDSON CURRENT (JRIC)-',E9.2,' AMPS/CMA 2'/
Lix, REFERENCE DENSITY (NR)-',E9.2,' i/CMA 3'/
lX,' CHARACTERISTIC TIME (TCHAR)- ',F7.4,' SECS*E-O6'I
LiX,' NONDIM CURRENT (I)- ',F7.4/
Lix,' NONDIM EMISSION (ENR)- ',F8.3,' (NRIC/NR)'/
&ix,' KNUDSEN NUMBER (KN)- ',F7.4/
lx,' SQRT(MASS RATIO) (SMR)- 1,F7.4/
l1X,'MEAN FREE PATH RATIO (LAMDAR)- ',F7.4//
lX, 'TIME SETTINGS ------'/4X, 'NSTEPS=',I3/
&4x,,' T2-',F6.1/4X,'DELTAT-',F6.3/4X,' DTP-',F6.3/
&4X,' LSF-1,13)

159 FORMAT(4X,'NEB(',I2,')=',F8.3,' TAU(',12,')=',F8.3)
160 FORMAT(//lX,'ADVANCED DIAGNOSTIC OUTPUT ------'I

L4X, 'ECHI=' ,F5.1,' ENE' ,F7.4,' EA2LPHA-' ,F7.4/
L4X,'CCHI=",F5.l,' CNE=',F7.4,' CALPHA-',F7.4/
L4X,'AN-',F7.4,' AT=',F7.4/4X, 'BN=' ,F7.4,' BT-',F7.4/
L4X, 'CN',,F7.4,' CT=',F7.4/4X,'SN=',F7.4,' ST=',F7.41
&4X,'LAMNEB- ',F5.2/4X,'LAMTAU=',F5.2/4X,'ELOSSB. ',F6.3/
L4X,'ARECN= ',F6.3/4X,'EGNDB= ',F6.3,/4X,'IDEN=',Ii/
L4X,'FYEN- ',F5.2/4X,'RE= ',F5.2//
&lX,'STARTUP DENSITY AND TEMPERATURE RATIOS ------

161 FORMAT(/1X '---------------------------------------
------------------ )

END



c DOS FILE PRED4.FOR
SUBROUTINE SHEATI{(JNET,ENR,TAU,ECHI,PHIB,EALPHA,ENE)
REAL ENE,ECHIENR,TAU,PHIB,EALPHA,JNET,A,S,B,DPH
A-1. 1485
B-1. 169
S-.1
ECHI ( ( (JNET-A) +SQRT ((JNET-A) **2+4*S*B) ) /(2*S) )**2
IF(ECHI.LT.0.0) ECHI - 0.0
ENE-(SQRT(3.1415926512) *JNET*SQRT(TAU))

+ (1/EXP (ECHI/TAU))
PHIB-ALOG (ABS (ENR/ENE))
IF(PHIB.LE.0.0)THEN

PHIBP - 0. 0
ENE -ENR
ECHI = - TAU*ALOG(ENE -(SQRT(3.14159265/2)*JNET*SQRT(TAU)))

END IF
DPH - (PHIB - ECHI)/TAU
IF(DPH.LT.0.0000001) DPH - 0.0000001
EALPHA=(1.0/TAU)*(3.14159265/2)*( (1.0 + ERF(SQRT(DPH)))

* - (1./2.)*(1.0 + ERF(SQRT(4.0*DPH))) )**2 /(EXP(-DPH)
* - (1./4.)*EXP(-4.O*DPH) )**2
RETURN
END


